神经网络近似模型在液压支架顶梁轻量化设计中的应用
Application of neural network approximate model in lightweight design of hydraulic support top beam
-
摘要: 针对液压支架顶梁在满足工况要求的前提下质量需要达到最小的工程目标,提出了神经网络近似模型和遗传算法相结合的顶梁轻量化设计方法:首先运用ANSYS建立顶梁参数化模型,以顶梁质量为目标函数,选取5个对质量和强度影响较大的设计变量,建立了顶梁优化模型;然后用优化拉丁方采样方法和ANSYS获取训练样本,利用神经网络对样本集进行非线性拟合,建立神经网络近似模型,对顶梁质量和最大应力进行近似计算,用遗传算法求解顶梁优化模型,最终得到最优解.优化结果表明,顶梁优化后的质量为8 038.2 kg,减轻了9.66%,最大应力值小于顶梁材料的屈服强度且满足疲劳寿命要求.Abstract: For the top beam of hydraulic support to meet the requirements of working conditions, the goal of the project is to minimize the quality.A lightweight design method for the top beam was proposed combined with neural network approximation model and genetic algorithm.Firstly, using ANSYS to build a parametric model to the top beam, taking the quality of the top beam as the objective function,5 design variables that affect quality and intensity were selected,the optimization model of the top beam was established.Then, Optimal Latin Hypercube sampling method and ANSYS were used to get training samples.Neural network was applied to nonlinear fitting of sample set, and the approximate model of neural network was established.The approximate model was used to approximate the quality and maximal stress of the top beam,genetic algorithm was applied to solve the optimization model of the top beam, and the optimal solution was obtained finally.The optimization results showed that the quality of the top beam was 8 038.2 kg, which reduced by 9.66%.The maximum stress value was less than the yield strength of the top beam material and met the fatigue life requirement.
-
Key words:
- hydraulic support top beam /
- neural network /
- approximate model /
- genetic algorithm /
- lightweight design
-
-
[1]
OBLACK M,HARL B,BUTINAR B.Optimal design of hydraulic support[J].Structural and Multidisciplinary Optimization,2000,20(1):76.
-
[2]
程智虎,王京涛,陆金桂,等.基于可靠性视角下的液压支架顶梁的轻量化设计[J].矿业研究与开发,2017,37(4):95.
-
[3]
王忠宾,赵啦啦,李舒斌,等.支撑掩护式液压支架的优化设计[J].重庆大学学报,2009,32(9):1037.
-
[4]
LU J G,ZHOU J,WANG H,et al.An approach to structural approximation analysis by artificial neural networks[J].Science in China:Series A(English Edition),1994,37(8):990.
-
[5]
琚亚平,张楚华.基于人工神经网络与遗传算法的风力机翼型优化设计方法[J].中国电机工程学报,2009,29(20):106.
-
[6]
苟晓明.煤矿用液压支架的轻量化设计与研究[D].重庆:重庆理工大学,2014.
-
[7]
赵东波,陆金桂,姚灵灵.液压支架顶梁疲劳寿命的改进神经网络预测[J].矿业研究与开发,2015,35(12):106.
-
[8]
陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
-
[9]
张文迁.基于遗传算法的液压支架质量和运动优化[J].煤矿机械,2014,35(5):30.
-
[10]
王智,谢延敏,胡静,等.基于改进灰色神经网络模型的板料成形缺陷预测研究[J].中国机械工程,2013,24(22):3075.
-
[11]
葛继科,邱玉辉,吴春明,等.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911.
-
[12]
宋茂斌,冯宝平,张展羽.基于遗传算法的皮尔逊Ⅲ 型曲线参数估计[J].中国农村水利水电,2008(6):52.
-
[13]
王雷,陆金桂,张建德,等.风力机叶片神经网络结构近似分析的数值实验[J].振动、测试与诊断,2015,35(1):116.
-
[14]
石峰,娄臻亮,张永清,等.基于遗传算法和神经网络的冷挤压工艺参数模糊优化设计[J].机械工程学报,2002(8):45.
-
[1]
-

计量
- PDF下载量: 34
- 文章访问数: 1756
- 引证文献数: 0