JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Article Contents
.
Citation: . shu

Comparative study on antioxidant activity of EGCG and theaflavin based on density functional theory

  • Corresponding author: BU Ying, buying130@126.com
  • Received Date: 2024-07-08
    Accepted Date: 2024-10-24
    Available Online: 2025-08-26
  • The molecular structures and corresponding free radicals of the mian functional components epigallocatechin gallate (EGCG) and theaflavin in green tea and black tea were theoretically calculated by using the density functional theory (DFT) method of quantum chemistry. The differences in antioxidant activity and solvation effect between EGCG and theaflavin were analyzed using various antioxidant indicators, and the structureactivity relationship between the antioxidant activity of EGCG and theaflavin and their corresponding molecular structures was explored. The results showed that theaflavin had higher antioxidant activity than EGCG, and its frontline molecular orbital energy level ΔE(LUMO-HOMO) was only 5. 67 eV, phenol hydroxyl BDE of C7'—OH was only 321. 9 kJ/mol, IP was only 461. 4 kJ/mol, and the spin density of Cb—OH oxygen atom was only 0. 218. In nonpolar solvents, sequential proton-loss electron transfer (SPLET) is the preferred reaction mechanism. In polar solvents, single electron transfer followed by proton transfer (SET-PT) is the preferred reaction mechanism. C5'—OH of B ring may be the reactive site of EGCG, while C7'—OH of A' ring may be the reactive site of theaflavin. Therefore, theaflavin has strong antioxidant activity, and the position of the phenol hydroxyl group has a significant influence on it. The DFT method can provide a new perspective for studying the antioxidant activity of tea’s functional components.
  • 加载中
    1. [1]

      李朝云,邱树毅,班世栋,等.绿茶中表没食子儿茶素没食子酸酯生物活性研究进展[J].中国酿造,2019, 38(9):12-18.

    2. [2]

      闫晓佳,梁秀萍,李思琪,等.表没食子儿茶素没食子酸酯性质、稳定性及其递送体系的研究进展[J].食品科学,2020,41(1):258-266.

    3. [3]

      刘昌伟,张梓莹,王俊懿,等.茶黄素生物学活性研究进展[J].食品科学,2022,43(19):318-329.

    4. [4]

      谢虹,罗志聪,李熙灿.茶黄素抗氧化化学机制研究[J].食品与机械,2018,34(3):23-26.

    5. [5]

      AHMAD A,NOSHEEN F,ARSHADM U,et al. Isolation and antioxidant characterization of theaflavin for neuroprotective effect in mice model[J]. Food Science&Nutrition,2023,11(6):3485-3496.

    6. [6]

      刘晓慧,揭国良,林康,等. EGCG和茶氨酸对细胞氧化损伤的协同保护和修复作用研究[J].茶叶科学, 2014,34(3):239-247.

    7. [7]

      王伟伟,苏威,江和源,等. EGCG乙酰化衍生物清除自由基活性的构效分析[J].食品工业科技, 2017, 38(7):59-63.

    8. [8]

      LEE H J,CHO H S,PARK E,et al. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis[J]. Toxicology,2008,250(2/3):109-115.

    9. [9]

      VAGÁNEK A,RIMARCÍK J,DROPKOVÁ K,et al. Reaction enthalpies of OH bonds splitting-off in flavonoids:The role of non-polar and polar solvent[J]. Computational and Theoretical Chemistry,2014,10(1050):31-38.

    10. [10]

      卢俊,高涵,卢庆华,等.酚酸物质抗氧化性及溶剂化效应的理论计算[J].食品科学,2024,45(7):52-60.

    11. [11]

      STEELE V E,KELLOFF G J,BALENTINE D,et al. Comparative chemopreventive mechanisms of green tea,black tea and selected polyphenol extracts measured by in vitro bioassays[J]. Carcinogenesis,2000,21(1):63-67.

    12. [12]

      JOVANOVIC S V,HARA Y,STEENKEN S,et al. Antioxidant potential of theaflavins. A pulse radiolysis study[J]. Journal of the American Chemical Society,1997,119(23):5337-5343.

    13. [13]

      常瑞,朱秋劲.密度泛函理论在多酚抗氧化机制中的应用[J].山地农业生物学报,2019,38(2):52-60.

    14. [14]

      GALANO A,MAZZONE G,ALVAREZ-DIDUK R,et al. Food antioxidants:Chemical insights at the molecular level[J]. Annual Review of Food Science and Technology, 2016,7:335-352.

    15. [15]

      JOMOVA K,LAWSON M,DROSTINOVA L,et al. Protective role of quercetin against copper (II)-induced oxidative stress:A spectroscopic,theoretical and DNA damage study[J]. Food and Chemical Toxicology, 2017, 110:340-350.

    16. [16]

      裴玲,徐秋红.白藜芦醇类似物结构与抗氧化活性关系研究[J].天然产物研究与开发,2017,29(8):1277-1283
      ,1306.

    17. [17]

      杨怡萌,陈星宇,吴娅,等.蒲公英黄酮抗氧化活性的构效关系分析[J].化学通报,2020,83(11):1031-1037.

    18. [18]

      ANOUAR E H. A quantum chemical and statistical study of phenolic schiff bases with antioxidant activity against DPPH free radical[J]. Antioxidants,2014,3(2):309-322.

    19. [19]

      董梦依,王倩芸,刘科梅,等.量子化学计算对自由基清除肽的构效关系[J].食品工业科技,2018,39(16):21-26.

    20. [20]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16[M]. Rev. A. 03. Wallingford:Gaussian Inc.,2016.

    21. [21]

      DENNINGTON R,KEITH T A,MILLAM J M. GaussView[M]. 6th ed. Shawnee Mission:Semichem Inc.,2016.

    22. [22]

      吴莉,齐婧敏,吕庆章.六种花青素类化合物抗氧化活性的DFT研究[J].化学研究与应用,2014,26(7):997-1003.

    23. [23]

      LU T,CHEN F W. Multiwfn:A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012,33(5):580-592.

    24. [24]

      HUMPHREY W,DALKE A,SCHULTEN K. VMD:Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996,14(1):33-38.

    25. [25]

      MARKOVIC'Z, TOŠOVI C'J, MILENKOVI C'D, et al. Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents[J]. Computational and Theoretical Chemistry,2016,1077:11-17.

    26. [26]

      刘靖丽,于海东,梁艳妮.中药黄芪中黄酮类化合物抗氧化活性的DFT研究[J].化学与生物工程,2019,36(1):36-40.

    27. [27]

      MISHRA S, TANDON P, ERAVUCHIRA P J, et al. Vibrational spectroscopy and density functional theory analysis of 3-O-caffeoylquinic acid[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2013,104:358-367.

    28. [28]

      张鑫,杨英杰,吕庆章. 4种甘草黄酮类化合物抗氧化活性的密度泛函理论研究[J].计算机与应用化学, 2012,29(6):656-660.

    29. [29]

      张鑫,杨英杰,吕庆章.黄芪异黄酮类化合物抗氧化活性的密度泛函理论研究[J].化学研究与应用,2012, 24(11):1662-1669.

    30. [30]

      HUANG Y,RONG C Y,ZHANG R Q,et al. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory[J]. Journal of Molecular Modeling,2017,23(1):3.

    31. [31]

      胡炜彦,于浩飞,张荣平.人参皂苷Rg3对H2O2导致海马神经元损伤的保护作用研究[J].中成药,2014, 36(4):670-674.

    32. [32]

      ZHOU B,HU X Q,ZHU J J,et al. Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films[J]. International Journal of Biological Macromolecules,2016,91:68-74.

    33. [33]

      SHANG Y X,LI X Z,LI Z S,et al. Theoretical study on the radical scavenging activity and mechanism of four kinds of Gnetin molecule[J]. Food Chemistry,2022,378:131975.

    34. [34]

      王淳纯,覃小丽,阚建全,等.量子化学计算法比较不同脂肪酸分子的反应活性位点[J].食品科学,2021, 42(8):74-80.

    35. [35]

      王兰娇,李大婧,张良聪,等.利用密度泛函理论分析蓝莓花色苷抗氧化活性[J].食品科学,2020,41(17):53-59.

    36. [36]

      XUE Y S,ZHENG Y G,AN L,et al. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins[J]. Food Chemistry,2014,151:198-206.

    37. [37]

      ZHENG Y Z, DENG G, CHEN D F, et al. Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives:Effects of the chain length and solvent[J]. Food Chemistry,2018,240:323-329.

    38. [38]

      ZHENG Y Z,CHEN D F,DENG G,et al. The antioxidative activity of piceatannol and its different derivatives:Antioxidative mechanism analysis[J]. Phytochemistry, 2018,156:184-192.

    39. [39]

      MARKOVIC'S, TOŠOVI C'J. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids[J]. Food Chemistry,2016,210:585-592.

    40. [40]

      齐婧敏.几种天然黄酮类化合物清除自由基活性的密度泛函理论研究[D].新乡:河南师范大学,2014:47-48.

Article Metrics

Article views(48) PDF downloads(0) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return