食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究
The acid production performance of co-fermentation between food industry waste and low organic matter residual sludge
-
摘要: 为同时解决食品工业生产废弃物与低有机质剩余污泥的处理处置问题,将这2种废弃物进行共发酵处理,考查不同质量比(0∶1.0、0.5∶1.0、1.0∶1.0和1.5∶1.0)下二者共发酵系统(H0、H1、H2和H3共发酵系统)的性能。结果表明:食品工业生产废弃物的引入会显著降低共发酵系统的水解性能,同时明显提高共发酵系统的酸化性能,在H3共发酵系统中,化学需氧量(COD)和可挥发性短链脂肪酸(SCFAs)的质量浓度均最高,分别是H0共发酵系统的2.83倍和2.30倍。随着食品工业生产废弃物投加量的增加,NH+4—N的质量浓度显著降低,H3共发酵系统仅为H0共发酵系统的31.9%,而PO3-4—P的质量浓度因Ca3(PO4)2和CaNH4PO4沉淀的生成保持在较低水平(≤1.01 mg/L)。此外,生物酶活性也发生了显著变化,蛋白酶、酸性磷酸酶和丁酸激酶活性均降低,而α-葡萄糖苷酶和碱性磷酸酶活性均升高,脱氢酶活性受食品工业生产废弃物投加量的影响较小,乙酸激酶活性则呈先升高后降低的趋势。适量引入食品工业生产废弃物还能促进功能微生物Firmicutes(产乙酸菌优势门)、Proteobacteria、Actinobacteriota和Bacteroidota的富集,在H2共发酵系统中,Firmicutes的相对丰度最高,达63.1%。因此,适量引入食品工业生产废弃物能够实现低有机质剩余污泥发酵系统高效产酸的目的。Abstract: To simultaneously address the treatment and disposal issues of food industry production waste and low organic matter residual sludge, these two wastes were co-fermented. The performance of H0,H1, H2 and H3 co-fermentation systems under mass ratios of 0∶1.0, 0.5∶1.0, 1.0∶1.0 and 1.5∶1.0 was evaluated. Results indicated that food industry production waste introduction significantly reduced hydrolysis performance but enhanced acidification performance of the co-fermentation systems. In the H3 system, COD and volatile SCFAs concentrations reached their maximum, being 2.83-fold and 2.30-fold higher than those in H0, respectively. As food industry production waste dosage increased, NH+4—N concentration decreased markedly (31.9% of H0 in H3), while PO3-4—P remained low (≤1.01 mg/L) due to Ca3(PO4)2 and CaNH4PO4 precipitates. Enzyme activities varied: protease, acid phosphatase, and butyrate kinase decreased; α-glucosidase and alkaline phosphatase increased; dehydrogenase was less affected; acetate kinase initially rose then declined. Appropriate food industry production waste introduction also enriched functional microorganisms, including Firmicutes (dominant acetic acid-producing phylum, 63.1% in H2), Proteobacteria, Actinobacteriota, and Bacteroidota. Thus, food industry production waste addition enables efficient acid production in low organic matter residual sludge co-fermentation systems.
-
-
[1]
薛翔丹,王畅伟,严思佳,等.生物炭和零价铁促进剩余污泥厌氧产酸发酵[J].环境科学与技术,2025,48(3):195-200.
-
[2]
LIAO X C,LI H.Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation[J].Applied Energy,2015,148:252-259.
-
[3]
SHI X C,ZHU L,LI B,et al.Surfactant-assisted thermal hydrolysis off waste activated sludge for improved dewaterability,organic release,and volatile fatty acid production[J].Waste Management,2021,124:339-347.
-
[4]
MEHARIYA S,PATEL A K,OBULISAMY P K,et al.Co-digestion of food waste and sewage sludge for methane production:Current status and perspective[J].Bioresource Technology,2018,265:519-531.
-
[5]
NG B J H,MAO Y,CHEN C L,et al.Municipal food waste management in Singapore:Practices,challenges and recommendations[J].Journal of Material Cycles and Waste Management,2017,19(1):560-569.
-
[6]
VAIDYA R,BOARDMAN G D,NOVAK J T,et al.Effect of high strength food wastes on anaerobic codigestion of sewage sludge[J].Water Environment Research,2018,90(4):293-306.
-
[7]
王志华.不同预处理方式对市政污泥/餐厨垃圾混合厌氧消化产甲烷的影响分析[J].清洗世界,2023,39(12):61-63.
-
[8]
LI Q,LI H,WANG G J,et al.Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system,looking in particular at stability and efficiency[J].Bioresource Technology,2017,237:231-239.
-
[9]
JIN B D, JIA J S, CHENG K, et al. Facilitating effects of the synergy with zero-valent iron and peroxysulfate on the sludge anaerobic fermentation system: Combined biological enzyme, microbial community and fermentation mechanism assessment[J].Chemosphere, 2024, 355:141805.
-
[10]
LI X D, WANG B, MA Y Q, et al. Enhanced mesophilic fermentation of waste activated sludge by integration with in-situ nitrate reduction[J].Bioresource Technology, 2023, 368: 128317.
-
[11]
JIN B D, LIU Y, CHEN X, et al. Insight into the potentiality of nano zero-valent iron on enhancing the nitrite accumulation and phosphorus removal performance of endogenous partial denitrification systems[J].Chemosphere, 2024,352:141304.
-
[12]
LI X F,WU Y H,ZHANG L,et al.Comparison of three common DNA concentration measurement methods[J].Analytical Biochemistry,2014,451:18-24.
-
[13]
GOEL R,MINO T,SATOH H,et al.Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor[J].Water Research,1998,32(7):2081-2088.
-
[14]
LIAO Y H, LI S J, ZHU X F, et al. The promotion and inhibition effect of graphene oxide on the process of microbial denitrification at low temperature[J].Bioresource Technology, 2021, 340:125636.
-
[15]
LAI H J, FANG H W, HUANG L, et al. A review on sediment bioflocculation: Dynamics, influencing factors and modeling[J].Science of The Total Environment, 2018, 642: 1184-1200.
-
[16]
MAYHEW J W,ONDERDONK A B,GORBACH S L.Effects of time and growth media on short-chain fatty acid production by Bacteroides fragilis[J].Applied Microbiology,1975,29(4):472-475.
-
[17]
LI Y Y,JIN Y Y,BORRION A,et al.Effects of organic composition on mesophilic anaerobic digestion of food waste[J].Bioresource Technology,2017,244(Pt 1):213-224.
-
[18]
ZHAO Y X,CHEN Y G,ZHANG D,et al.Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition:The role of fermentation pH[J].Environmental Science & Technology,2010,44(9):3317-3323.
-
[19]
MONBALLIU A,GHYSELBRECHT K,PINOY L,et al.Phosphorus reclamation by end-of-pipe recovery as calcium phosphate from effluent of wastewater treatment plants of agroindustry[J].Journal of Environmental Chemical Engineering,2020,8(5):104280.
-
[20]
PANG H L,JIAO Q Q,HE J G,et al.Enhanced short-chain fatty acids production through a short-term anaerobic fermentation of waste activated sludge:Synergistic pretreatment of alkali and alkaline hydrolase blend[J].Journal of Cleaner Production,2022,342:130954.
-
[21]
LI L,HE J G,XIN X D,et al.Enhanced bioproduction of short-chain fatty acids from waste activated sludge by potassium ferrate pretreatment[J].Chemical Engineering Journal,2018,332:456-463.
-
[22]
HUANG X F,SHEN C M,LIU J,et al.Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J].Chemical Engineering Journal,2015,264:280-290.
-
[23]
VAN KLOEKE F,GEESEY G G.Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs[J].Microbial Ecology,1999,38(3):201-214.
-
[24]
NYBROE O,JØRGENSEN P E,HENZE M.Enzyme activities in waste water and activated sludge[J].Water Research,1992,26(5):579-584.
-
[25]
田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344.
-
[26]
袁牧,王昌留,王一斐,等.超氧化物歧化酶的研究进展[J].中国组织化学与细胞化学杂志,2016,25(6):550-558.
-
[27]
FENG L Y,CHEN Y G,ZHENG X.Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition:The effect of pH[J].Environmental Science & Technology,2009,43(12):4373-4380.
-
[28]
HUANG X,DONG W Y,WANG H J,et al.Role of acid/alkali-treatment in primary sludge anaerobic fermentation:Insights into microbial community structure,functional shifts and metabolic output by high-throughput sequencing[J].Bioresource Technology,2018,249:943-952.
-
[29]
REN S,USMAN M,TSANG D C W,et al.Hydrochar-facilitated anaerobic digestion:Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups[J].Environmental Science & Technology,2020,54(9):5755-5766.
-
[30]
ALALAWY A I,GUO Z D,ALMUTAIRI F M,et al.Explication of structural variations in the bacterial and archaeal community of anaerobic digestion sludges:An insight through metagenomics[J].Journal of Environmental Chemical Engineering,2021,9(5):105910.
-
[31]
JIN Y,LIN Y J,WANG P,et al.Volatile fatty acids production from saccharification residue from food waste ethanol fermentation:Effect of pH and microbial community[J].Bioresource Technology,2019,292:121957.
-
[32]
ZHANG K G,SONG L,DONG X Z.Proteiniclasticum ruminis gen.nov.,sp.nov.,a strictly anaerobic proteolytic bacterium isolated from yak rumen[J].International Journal of Systematic and Evolutionary Microbiology,2010,60(Pt 9):2221-2225.
-
[33]
RENAUD F N,AUBEL D,RIEGEL P,et al.Corynebacterium freneyi sp.nov.,alpha-glucosidase-positive strains related to Corynebacterium xerosis[J].International Journal of Systematic and Evolutionary Microbiology,2001,51(Pt 5):1723-1728.
-
[34]
YAN P X,ZHAO Y B,ZHANG H,et al.A comparison and evaluation of the effects of biochar on the anaerobic digestion of excess and anaerobic sludge[J].Science of the Total Environment,2020,736:139159.
-
[35]
PAGEL J E,SEYFRIED P L.Numerical taxonomy of aquatic Acinetobacter isolates[J].Journal of General Microbiology,1976,96(2):220-232.
-
[36]
GRABOWSKI A,TINDALL B J,BARDIN V,et al.Petrimonas sulfuriphila gen.nov.,sp.nov.,a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(Pt 3):1113-1121.
-
[37]
YUMOTO I,HISHINUMA-NARISAWA M,HIROTA K,et al.Exiguobacterium oxidotolerans sp.nov.,a novel alkaliphile exhibiting high catalase activity[J].International Journal of Systematic and Evolutionary Microbiology,2004,54(Pt 6):2013-2017.
-
[1]
-

计量
- PDF下载量: 0
- 文章访问数: 190
- 引证文献数: 0