JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究

金宝丹 王家城 杜静雨 邓伟玲 古家宇 王保贵 贾宇升

金宝丹, 王家城, 杜静雨, 等. 食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究[J]. 轻工学报, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013
引用本文: 金宝丹, 王家城, 杜静雨, 等. 食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究[J]. 轻工学报, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013
JIN Baodan, WANG Jiacheng, DU Jingyu, et al. The acid production performance of co-fermentation between food industry waste and low organic matter residual sludge[J]. Journal of Light Industry, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013
Citation: JIN Baodan, WANG Jiacheng, DU Jingyu, et al. The acid production performance of co-fermentation between food industry waste and low organic matter residual sludge[J]. Journal of Light Industry, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013

食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究

    作者简介: 金宝丹(1985—),女,吉林省长春市人,郑州轻工业大学副教授,博士,主要研究方向为污泥处理与处置。E-mail:2016024@zzuli.edu.cn;
  • 基金项目: 国家自然科学基金项目(42007340)
    河南省科技攻关项目(232102321058)

  • 中图分类号: TS201.1;X703

The acid production performance of co-fermentation between food industry waste and low organic matter residual sludge

  • Received Date: 2024-04-17
    Accepted Date: 2024-07-20

    CLC number: TS201.1;X703

  • 摘要: 为同时解决食品工业生产废弃物与低有机质剩余污泥的处理处置问题,将这2种废弃物进行共发酵处理,考查不同质量比(0∶1.0、0.5∶1.0、1.0∶1.0和1.5∶1.0)下二者共发酵系统(H0、H1、H2和H3共发酵系统)的性能。结果表明:食品工业生产废弃物的引入会显著降低共发酵系统的水解性能,同时明显提高共发酵系统的酸化性能,在H3共发酵系统中,化学需氧量(COD)和可挥发性短链脂肪酸(SCFAs)的质量浓度均最高,分别是H0共发酵系统的2.83倍和2.30倍。随着食品工业生产废弃物投加量的增加,NH+4—N的质量浓度显著降低,H3共发酵系统仅为H0共发酵系统的31.9%,而PO3-4—P的质量浓度因Ca3(PO4)2和CaNH4PO4沉淀的生成保持在较低水平(≤1.01 mg/L)。此外,生物酶活性也发生了显著变化,蛋白酶、酸性磷酸酶和丁酸激酶活性均降低,而α-葡萄糖苷酶和碱性磷酸酶活性均升高,脱氢酶活性受食品工业生产废弃物投加量的影响较小,乙酸激酶活性则呈先升高后降低的趋势。适量引入食品工业生产废弃物还能促进功能微生物Firmicutes(产乙酸菌优势门)、Proteobacteria、Actinobacteriota和Bacteroidota的富集,在H2共发酵系统中,Firmicutes的相对丰度最高,达63.1%。因此,适量引入食品工业生产废弃物能够实现低有机质剩余污泥发酵系统高效产酸的目的。
    1. [1]

      薛翔丹,王畅伟,严思佳,等.生物炭和零价铁促进剩余污泥厌氧产酸发酵[J].环境科学与技术,2025,48(3):195-200.

    2. [2]

      LIAO X C,LI H.Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation[J].Applied Energy,2015,148:252-259.

    3. [3]

      SHI X C,ZHU L,LI B,et al.Surfactant-assisted thermal hydrolysis off waste activated sludge for improved dewaterability,organic release,and volatile fatty acid production[J].Waste Management,2021,124:339-347.

    4. [4]

      MEHARIYA S,PATEL A K,OBULISAMY P K,et al.Co-digestion of food waste and sewage sludge for methane production:Current status and perspective[J].Bioresource Technology,2018,265:519-531.

    5. [5]

      NG B J H,MAO Y,CHEN C L,et al.Municipal food waste management in Singapore:Practices,challenges and recommendations[J].Journal of Material Cycles and Waste Management,2017,19(1):560-569.

    6. [6]

      VAIDYA R,BOARDMAN G D,NOVAK J T,et al.Effect of high strength food wastes on anaerobic codigestion of sewage sludge[J].Water Environment Research,2018,90(4):293-306.

    7. [7]

      王志华.不同预处理方式对市政污泥/餐厨垃圾混合厌氧消化产甲烷的影响分析[J].清洗世界,2023,39(12):61-63.

    8. [8]

      LI Q,LI H,WANG G J,et al.Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system,looking in particular at stability and efficiency[J].Bioresource Technology,2017,237:231-239.

    9. [9]

      JIN B D, JIA J S, CHENG K, et al. Facilitating effects of the synergy with zero-valent iron and peroxysulfate on the sludge anaerobic fermentation system: Combined biological enzyme, microbial community and fermentation mechanism assessment[J].Chemosphere, 2024, 355:141805.

    10. [10]

      LI X D, WANG B, MA Y Q, et al. Enhanced mesophilic fermentation of waste activated sludge by integration with in-situ nitrate reduction[J].Bioresource Technology, 2023, 368: 128317.

    11. [11]

      JIN B D, LIU Y, CHEN X, et al. Insight into the potentiality of nano zero-valent iron on enhancing the nitrite accumulation and phosphorus removal performance of endogenous partial denitrification systems[J].Chemosphere, 2024,352:141304.

    12. [12]

      LI X F,WU Y H,ZHANG L,et al.Comparison of three common DNA concentration measurement methods[J].Analytical Biochemistry,2014,451:18-24.

    13. [13]

      GOEL R,MINO T,SATOH H,et al.Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor[J].Water Research,1998,32(7):2081-2088.

    14. [14]

      LIAO Y H, LI S J, ZHU X F, et al. The promotion and inhibition effect of graphene oxide on the process of microbial denitrification at low temperature[J].Bioresource Technology, 2021, 340:125636.

    15. [15]

      LAI H J, FANG H W, HUANG L, et al. A review on sediment bioflocculation: Dynamics, influencing factors and modeling[J].Science of The Total Environment, 2018, 642: 1184-1200.

    16. [16]

      MAYHEW J W,ONDERDONK A B,GORBACH S L.Effects of time and growth media on short-chain fatty acid production by Bacteroides fragilis[J].Applied Microbiology,1975,29(4):472-475.

    17. [17]

      LI Y Y,JIN Y Y,BORRION A,et al.Effects of organic composition on mesophilic anaerobic digestion of food waste[J].Bioresource Technology,2017,244(Pt 1):213-224.

    18. [18]

      ZHAO Y X,CHEN Y G,ZHANG D,et al.Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition:The role of fermentation pH[J].Environmental Science & Technology,2010,44(9):3317-3323.

    19. [19]

      MONBALLIU A,GHYSELBRECHT K,PINOY L,et al.Phosphorus reclamation by end-of-pipe recovery as calcium phosphate from effluent of wastewater treatment plants of agroindustry[J].Journal of Environmental Chemical Engineering,2020,8(5):104280.

    20. [20]

      PANG H L,JIAO Q Q,HE J G,et al.Enhanced short-chain fatty acids production through a short-term anaerobic fermentation of waste activated sludge:Synergistic pretreatment of alkali and alkaline hydrolase blend[J].Journal of Cleaner Production,2022,342:130954.

    21. [21]

      LI L,HE J G,XIN X D,et al.Enhanced bioproduction of short-chain fatty acids from waste activated sludge by potassium ferrate pretreatment[J].Chemical Engineering Journal,2018,332:456-463.

    22. [22]

      HUANG X F,SHEN C M,LIU J,et al.Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J].Chemical Engineering Journal,2015,264:280-290.

    23. [23]

      VAN KLOEKE F,GEESEY G G.Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs[J].Microbial Ecology,1999,38(3):201-214.

    24. [24]

      NYBROE O,JØRGENSEN P E,HENZE M.Enzyme activities in waste water and activated sludge[J].Water Research,1992,26(5):579-584.

    25. [25]

      田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344.

    26. [26]

      袁牧,王昌留,王一斐,等.超氧化物歧化酶的研究进展[J].中国组织化学与细胞化学杂志,2016,25(6):550-558.

    27. [27]

      FENG L Y,CHEN Y G,ZHENG X.Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition:The effect of pH[J].Environmental Science & Technology,2009,43(12):4373-4380.

    28. [28]

      HUANG X,DONG W Y,WANG H J,et al.Role of acid/alkali-treatment in primary sludge anaerobic fermentation:Insights into microbial community structure,functional shifts and metabolic output by high-throughput sequencing[J].Bioresource Technology,2018,249:943-952.

    29. [29]

      REN S,USMAN M,TSANG D C W,et al.Hydrochar-facilitated anaerobic digestion:Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups[J].Environmental Science & Technology,2020,54(9):5755-5766.

    30. [30]

      ALALAWY A I,GUO Z D,ALMUTAIRI F M,et al.Explication of structural variations in the bacterial and archaeal community of anaerobic digestion sludges:An insight through metagenomics[J].Journal of Environmental Chemical Engineering,2021,9(5):105910.

    31. [31]

      JIN Y,LIN Y J,WANG P,et al.Volatile fatty acids production from saccharification residue from food waste ethanol fermentation:Effect of pH and microbial community[J].Bioresource Technology,2019,292:121957.

    32. [32]

      ZHANG K G,SONG L,DONG X Z.Proteiniclasticum ruminis gen.nov.,sp.nov.,a strictly anaerobic proteolytic bacterium isolated from yak rumen[J].International Journal of Systematic and Evolutionary Microbiology,2010,60(Pt 9):2221-2225.

    33. [33]

      RENAUD F N,AUBEL D,RIEGEL P,et al.Corynebacterium freneyi sp.nov.,alpha-glucosidase-positive strains related to Corynebacterium xerosis[J].International Journal of Systematic and Evolutionary Microbiology,2001,51(Pt 5):1723-1728.

    34. [34]

      YAN P X,ZHAO Y B,ZHANG H,et al.A comparison and evaluation of the effects of biochar on the anaerobic digestion of excess and anaerobic sludge[J].Science of the Total Environment,2020,736:139159.

    35. [35]

      PAGEL J E,SEYFRIED P L.Numerical taxonomy of aquatic Acinetobacter isolates[J].Journal of General Microbiology,1976,96(2):220-232.

    36. [36]

      GRABOWSKI A,TINDALL B J,BARDIN V,et al.Petrimonas sulfuriphila gen.nov.,sp.nov.,a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir[J].International Journal of Systematic and Evolutionary Microbiology,2005,55(Pt 3):1113-1121.

    37. [37]

      YUMOTO I,HISHINUMA-NARISAWA M,HIROTA K,et al.Exiguobacterium oxidotolerans sp.nov.,a novel alkaliphile exhibiting high catalase activity[J].International Journal of Systematic and Evolutionary Microbiology,2004,54(Pt 6):2013-2017.

    1. [1]

      杨靖刘广昊王琼波韩丽王清福赵志伟李蕾王秋领 . 微生物发酵开发杏果渣香料的研究. 轻工学报, 2024, 0(0): -.

    2. [2]

      蒋纬胡颖朱振元 . 阳荷多糖提取工艺优化及其生物活性研究. 轻工学报, 2025, 40(4): 10-19. doi: 10.12187/2025.04.002

    3. [3]

      梁淼雷添占小林刘思奎张兴全邹恩凯刘语煊周瑞芳 . 烘焙处理对烟草废弃物热解和燃烧特性的影响. 轻工学报, 2025, 40(3): 65-74. doi: 10.12187/2025.03.008

    4. [4]

      李浩佳贺诗华曹艺泽郭西玉朱由余赵玮钦黄淳 . 以碳量子点为荧光信号的生物传感器构建及其在金银花 Pb2+ 检测中的应用. 轻工学报, 2024, 0(0): -.

    5. [5]

      宋丽丽苏飘章钰璟魏涛 . 产香酵母的分离、鉴定及其在低次烟叶发酵中的应用. 轻工学报, 2025, 40(4): 77-85. doi: 10.12187/2025.04.009

    6. [6]

      齐汉如欧阳少丰李玉杨雪鹏赵建国 . 果胶酶粗酶液与漆酶粗酶液复配酶解膨胀梗丝的工艺优化. 轻工学报, 2025, 40(4): 96-107. doi: 10.12187/2025.04.011

    7. [7]

      韩丽董滋强王丽娇李文钦王晨辉肖成志毛多斌 . 普通烟草NtASAT2的结构预测、克隆表达及功能验证. 轻工学报, 2025, 40(4): 69-76. doi: 10.12187/2025.04.008

    8. [8]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    9. [9]

      苏盼盼乔靖玥张宇申慧珊张艳艳刘兴丽张华王宏伟 . 面团发酵中淀粉水合能力变化对馒头品质的影响. 轻工学报, 2025, 40(4): 60-68. doi: 10.12187/2025.04.007

    10. [10]

      刘洪剑周乐群李贵忠彭漫江王雪锋张光海李枝桦刘涛 . 不同等级发酵后云南茄芯烟叶代谢组差异分析. 轻工学报, 2025, 40(4): 86-95. doi: 10.12187/2025.04.010

    11. [11]

      胡仙妹于美逍杨雪鹏张展尹献忠 . 木醋杆菌和酿酒酵母混菌发酵对烟用细菌纤维素品质的影响. 轻工学报, 2024, 39(6): 84-92. doi: 10.12187/2024.06.010

    12. [12]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 0(0): -.

    13. [13]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 39(5): 29-39. doi: 10.12187/2024.05.004

    14. [14]

      朱晓兰李宽赵勇袁广翔汪金玲俞京 . 酶萃取及组氨酸Heyns化合物加香对再造梗丝品质的影响. 轻工学报, 2024, 0(0): -.

    15. [15]

      朱晓兰李宽赵勇袁广翔汪金玲俞京 . 酶萃取及组氨酸Heyns化合物加香对再造梗丝品质的影响. 轻工学报, 2024, 39(6): 77-83. doi: 10.12187/2024.06.009

    16. [16]

      孙彦庆杜芬朱宗敏冯晓梅尚丽丽曹婉秀刘楚怡 . 大黄鱼鱼鳔低聚肽的制备及其延缓皮肤衰老的研究. 轻工学报, 2025, 40(1): 107-119. doi: 10.12187/2025.01.013

    17. [17]

      望运滔郭秀琴王昱李胜杰栗俊广陈博白艳红 . 甲壳素颗粒与原花青素协同改善低盐条件下肌原纤维蛋白乳液凝胶的凝胶特性研究. 轻工学报, 2025, 40(3): 28-37. doi: 10.12187/2025.03.004

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  190
  • 引证文献数: 0
文章相关
  • 收稿日期:  2024-04-17
  • 修回日期:  2024-07-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
金宝丹, 王家城, 杜静雨, 等. 食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究[J]. 轻工学报, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013
引用本文: 金宝丹, 王家城, 杜静雨, 等. 食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究[J]. 轻工学报, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013
JIN Baodan, WANG Jiacheng, DU Jingyu, et al. The acid production performance of co-fermentation between food industry waste and low organic matter residual sludge[J]. Journal of Light Industry, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013
Citation: JIN Baodan, WANG Jiacheng, DU Jingyu, et al. The acid production performance of co-fermentation between food industry waste and low organic matter residual sludge[J]. Journal of Light Industry, 2025, 40(4): 115-126. doi: 10.12187/2025.04.013

食品工业生产废弃物协同低有机质剩余污泥共发酵产酸性能研究

    作者简介:金宝丹(1985—),女,吉林省长春市人,郑州轻工业大学副教授,博士,主要研究方向为污泥处理与处置。E-mail:2016024@zzuli.edu.cn
  • 1. 郑州轻工业大学 材料与化学工程学院, 河南 郑州 450001;
  • 2. 中原环保股份有限公司, 河南 郑州 450008
基金项目:  国家自然科学基金项目(42007340)河南省科技攻关项目(232102321058)

摘要: 为同时解决食品工业生产废弃物与低有机质剩余污泥的处理处置问题,将这2种废弃物进行共发酵处理,考查不同质量比(0∶1.0、0.5∶1.0、1.0∶1.0和1.5∶1.0)下二者共发酵系统(H0、H1、H2和H3共发酵系统)的性能。结果表明:食品工业生产废弃物的引入会显著降低共发酵系统的水解性能,同时明显提高共发酵系统的酸化性能,在H3共发酵系统中,化学需氧量(COD)和可挥发性短链脂肪酸(SCFAs)的质量浓度均最高,分别是H0共发酵系统的2.83倍和2.30倍。随着食品工业生产废弃物投加量的增加,NH+4—N的质量浓度显著降低,H3共发酵系统仅为H0共发酵系统的31.9%,而PO3-4—P的质量浓度因Ca3(PO4)2和CaNH4PO4沉淀的生成保持在较低水平(≤1.01 mg/L)。此外,生物酶活性也发生了显著变化,蛋白酶、酸性磷酸酶和丁酸激酶活性均降低,而α-葡萄糖苷酶和碱性磷酸酶活性均升高,脱氢酶活性受食品工业生产废弃物投加量的影响较小,乙酸激酶活性则呈先升高后降低的趋势。适量引入食品工业生产废弃物还能促进功能微生物Firmicutes(产乙酸菌优势门)、Proteobacteria、Actinobacteriota和Bacteroidota的富集,在H2共发酵系统中,Firmicutes的相对丰度最高,达63.1%。因此,适量引入食品工业生产废弃物能够实现低有机质剩余污泥发酵系统高效产酸的目的。

English Abstract

参考文献 (37) 相关文章 (17)

目录

/

返回文章