JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

超声波降解多糖的作用表现、影响因素及机理研究进展

郭向阳 王璐璐 马景可 金珂婷

郭向阳, 王璐璐, 马景可, 等. 超声波降解多糖的作用表现、影响因素及机理研究进展[J]. 轻工学报, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005
引用本文: 郭向阳, 王璐璐, 马景可, 等. 超声波降解多糖的作用表现、影响因素及机理研究进展[J]. 轻工学报, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005
GUO Xiangyang, WANG Lulu, MA Jingke and et al. Research progress on ultrasonic degradation of polysaccharides: Effects,influencing factors,and mechanisms[J]. Journal of Light Industry, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005
Citation: GUO Xiangyang, WANG Lulu, MA Jingke and et al. Research progress on ultrasonic degradation of polysaccharides: Effects,influencing factors,and mechanisms[J]. Journal of Light Industry, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005

超声波降解多糖的作用表现、影响因素及机理研究进展

    作者简介: 郭向阳(1987—),男,河南省信阳市人,信阳师范大学副教授,博士(后),主要研究方向为食品化学与资源利用。E-mail:xiangyang.guo@ahau.edu.cn;
  • 基金项目: 国家自然科学基金面上项目(32072634)
    河南省高等学校重点科研项目(24B210015)

  • 中图分类号: TS201.2;O426.4

Research progress on ultrasonic degradation of polysaccharides: Effects,influencing factors,and mechanisms

  • Received Date: 2024-10-19
    Accepted Date: 2025-01-15

    CLC number: TS201.2;O426.4

  • 摘要: 多糖的生物活性与其相对分子质量密切相关,而具有简单、快速、环保、高效等优点的超声波法在降解多糖并增强其生物活性方面日益受到研究者的重视。对近年来超声波降解多糖的作用表现、影响因素及机理研究进行综述,认为:超声波降解可有效改变多糖的物化性质,降低其相对分子质量、溶液黏度及分子空间尺寸,提升其溶解度;还可引发单糖组成、单糖结构,以及分子空间构型、结晶状态等多糖结构的变化,增强多糖的抗氧化、免疫调节、降血糖等生物活性。超声波降解多糖的机理涵盖机械断键、空穴效应及自由基氧化还原反应,且受多糖相对分子质量、温度、超声功率、超声频率等多种因素的综合影响。实际应用中应结合多糖种类与需求优化参数,以调控降解过程。目前,超声波降解多糖的研究种类较单一,未来研究将集中在超声波降解多糖的构效关系与机理解析、同源类多糖降解条件与极限值探索、糖苷键定向裂解技术优化、多糖结构与生物活性关联性分析、降解条件系统拓展、动力学模型精准构建及工业化应用等方面,以促进超声波法在多糖降解中的应用,实现对多糖降解过程的精准调控。
    1. [1]

      BOATENG I D,GUO Y Z,YANG X M.Extraction,purification,structural characterization,and antitumor effects of water-soluble intracellular polysaccharide (IPSW-1) from Phellinus igniarius mycelia[J].Journal of Agricultural and Food Chemistry,2024,72(36):19721-19732.

    2. [2]

      阿卜杜拉·玉苏普,周丽楠,木合塔尔·吐尔洪,等.库鲁木提草多糖成分及其抗病毒活性研究[J].南开大学学报(自然科学版),2024,57(1):1-5.

    3. [3]

      HUANG F,FAN Y B,LIU X X,et al.Structural characterization and innate immunomodulatory effect of glucomannan from Bletilla striata[J].International Journal of Biological Macromolecules,2024,273:133206.

    4. [4]

      丁孟汝,王国栋,袁平川,等.多糖调控糖脂代谢的作用及其机制研究进展[J].南方医科大学学报,2021,41(3):471-475.

    5. [5]

      YAN T T,SUN J H,ZHANG Y Y,et al.Enteromorpha prolifera polysaccharide alleviates acute alcoholic liver injury in C57 BL/6 mice through the gut-liver axis and NF-κB pathway[J].Journal of Agricultural and Food Chemistry,2024,72(42):23258-23270.

    6. [6]

      巩子汉,虎峻瑞,段永强,等.白及多糖对胃溃疡模型大鼠血清IL-2R、IL-4及胃组织Caspase-8水平的影响[J].中国中医药信息杂志,2019,26(10):35-39.

    7. [7]

      SONG Q Y,LIU Z Q,ZHAO B Y.Structural characterization and antioxidant activity in aging mice of a homogenous polysaccharide isolated from Ecklonia kurome[J].Journal of Molecular Structure,2024,1318:139111.

    8. [8]

      ZHOU C S,YU X J,ZHANG Y Z,et al.Ultrasonic degradation,purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea[J].Carbohydrate Polymers,2012,87(3):2046-2051.

    9. [9]

      钟昕,周素梅,王强.药用真菌多糖研究进展[J].科技导报,2009,27(9):97-101.

    10. [10]

      MANTOVANI M S,BELLINI M F,ANGELI J P F,et al.β-glucans in promoting health:Prevention against mutation and cancer[J].Mutation Research,2008,658(3):154-161.

    11. [11]

      龚敏,朱勤,王彤,等.冬虫夏草多糖的分子结构与免疫活性[J].中国生物化学与分子生物学报,1990(6):486-492.

    12. [12]

      叶诚,周蓬蓬,余龙江,等.高相对分子质量裂褶多糖的制备与结构鉴定[J].生命科学研究,2007,11(2):100-104.

    13. [13]

      WU Q,QIN D D,CAO H X,et al.Enzymatic hydrolysis of polysaccharide from Auricularia auricula and characterization of the degradation product[J].International Journal of Biological Macromolecules,2020,162:127-135.

    14. [14]

      SHI M J,WANG F,JIANG H,et al.Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions[J].Food Chemistry,2020,322:126774.

    15. [15]

      HOU Z Q,WANG W K,WANG Y Y,et al.Rapid characterization of polysaccharides from marine animals using chemical degradation combined with liquid chromatography mass spectrometry[J].International Journal of Biological Macromolecules,2025,291:138535.

    16. [16]

      WANG Z C,ZHENG Y,ZHOU X Y,et al.Effect of Lactobacillus fermentation on the structural feature,physicochemical property,and bioactivity of plant and fungal polysaccharides:A review[J].Trends in Food Science & Technology,2024,148:104492.

    17. [17]

      冀晓龙,郭建行,田静源,等.植物多糖降解方法及降解产物特性研究进展[J].轻工学报,2023,38(3):55-62.

    18. [18]

      ZHANG Y L,DOU Z M,LI S S,et al.An ultrasonic degraded polysaccharide extracted from Pueraria lobata ameliorate ischemic brain injury in mice by regulating the gut microbiota and LPS-TLR4 pathway[J].Ultrasonics Sonochemistry,2025,112:107200.

    19. [19]

      YUAN D,LI C,HUANG Q,et al.Ultrasonic degradation effects on the physicochemical,rheological and antioxidant properties of polysaccharide from Sargassum pallidum[J].Carbohydrate Polymers,2020,239:116230.

    20. [20]

      TANG W,LIN L H,XIE J H,et al.Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus[J].Carbohydrate Polymers,2016,151:305-312.

    21. [21]

      QUE Y X,ZHANG Y,LIANG F X,et al.Structural characterization,antioxidant activity,and fermentation characteristics of Flammulina velutipes residue polysaccharide degraded by ultrasonic assisted H2O2-Vc technique[J].Ultrasonics Sonochemistry,2024,111:107085.

    22. [22]

      WANG Z C,ZHOU X Y,SHENG L L,et al.Effect of ultrasonic degradation on the structural feature,physicochemical property and bioactivity of plant and microbial polysaccharides:A review[J].International Journal of Biological Macromolecules,2023,236:123924.

    23. [23]

      CHEN G J,BU F,CHEN X H,et al.Ultrasonic extraction,structural characterization,physicochemical properties and antioxidant activities of polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products[J].International Journal of Biological Macromolecules,2018,112:656-666.

    24. [24]

      CHEN R Z,REN X,YIN W,et al.Ultrasonic disruption extraction,characterization and bioactivities of polysaccharides from wild Armillaria mellea[J].International Journal of Biological Macromolecules,2020,156:1491-1502.

    25. [25]

      YANG H H,BAI J W,MA C L,et al.Degradation models,structure,rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L.[J].International Journal of Biological Macromolecules,2020,165:738-746.

    26. [26]

      徐雅琴,杜明阳,杨露,等.超声波处理对黑加仑果实多糖性质与生物活性的影响[J].食品科学,2019,40(15):148-153.

    27. [27]

      WU T,ZIVANOVIC S,HAYES D G,et al.Efficient reduction of chitosan molecular weight by high-intensity ultrasound:Underlying mechanism and effect of process parameters[J].Journal of Agricultural and Food Chemistry,2008,56(13):5112-5119.

    28. [28]

      CHEN R H,CHANG J R,SHYUR J S.Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan[J].Carbohydrate Research,1997,299(4):287-294.

    29. [29]

      LORIMER J P,MASON T J,CUTHBERT T C,et al.Effect of ultrasound on the degradation of aqueous native dextran[J].Ultrasonics Sonochemistry,1995,2(1):S55-S57.

    30. [30]

      ZHU X H,ZHANG H L,YAN H,et al.Kinetics of degradation of Lycium barbarum polysaccharide by ultrasonication[J].Journal of Polymer Science Part B(Polymer Physics),2010,48(5):509-513.

    31. [31]

      ANTTI G,PENTTI P,HANNA K.Ultrasonic degradation of aqueous carboxymethylcellulose:Effect of viscosity,molecular mass,and concentration[J].Ultrasonics Sonochemistry,2008,15(4):644-648.

    32. [32]

      BAXTER S,ZIVANOVIC S,WEISS J.Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan[J].Food Hydrocolloids,2005,19(5):821-830.

    33. [33]

      AZHAR A,HAMDY M K.Sonication effect on potato starch and sweet potato powder[J].Journal of Food Science,1979,44(3):801-804.

    34. [34]

      LIU W,QIN Y M,SHI J Y,et al.Effect of ultrasonic degradation on the physicochemical characteristics,GLP-1 secretion,and antioxidant capacity of Polygonatum cyrtonema polysaccharide[J].International Journal of Biological Macromolecules,2024,274:133434.

    35. [35]

      郭蓉,常明昌,程艳芬,等.不同方法降解对鳞杯伞子实体多糖理化性质与活性的影响[J].食品科学,2023,44(7):123-131.

    36. [36]

      李彩金,杨焱,吴迪,等.超声降解对猴头菌多糖的理化性质及体外免疫活性的影响[J].食用菌学报,2017,24(4):44-49.

    37. [37]

      李苗苗,王寿权,陈健,等.超声波降解黄原胶制备低黏膳食纤维[J].食品工业科技,2013,34(18):288-290.

    38. [38]

      WANG Z M,CHEUNG Y C,LEUNG P H,et al.Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus[J].Bioresource Technology,2010,101(14):5517-5522.

    39. [39]

      严尚隆,潘创,杨贤庆,等.长松藻多糖降解、结构表征及降血糖活性测定[J].食品与发酵工业,2021,47(18):119-126.

    40. [40]

      王子朝,张迪,盛丽丽,等.超声降解影响多糖理化特性和生物活性研究进展[J].河南工业大学学报(自然科学版),2021,42(6):121-126.

    41. [41]

      李连启.鸡腿菇多糖AP1结构表征及超声提取对其结构影响[D].西安:陕西师范大学,2011.

    42. [42]

      孙润广,张静,王博,等.超声萃取参量对几种中药多糖结构影响的研究[C]//中华中医药学会.中华中医药学会2008年药用植物化学与中药有效成分分析研讨会论文集.2008:1-12.

    43. [43]

      李岱,张静,孙润广.超声波处理对柴胡多糖提取率、微观形貌特征及生物活性的影响[J].生物加工过程,2009,7(2):29-34.

    44. [44]

      LI M,MA F M,LI R,et al.Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment:Process parameters,structural characteristics,and antioxidant activities[J].International Journal of Biological Macromolecules,2020,160:979-990.

    45. [45]

      LIU H,BAO J G,DU Y M,et al.Effect of ultrasonic treatment on the biochemphysical properties of chitosan[J].Carbohydrate Polymers,2006,64(4):553-559.

    46. [46]

      CZECHOWSKA-BISKUP R,ROKITA B,ULANSKI P,et al.Radiation-induced and sonochemical degradation of chitosan as a way to increase its fat-binding capacity[J].Nuclear Instruments and Methods in Physics Research Section B(Beam Interactions with Materials and Atoms),2005,236(1/2/3/4):383-390.

    47. [47]

      EBRINGEROVÁ A,HROMÁDKOVÁ Z.The effect of ultrasound on the structure and properties of the water-soluble corn hull heteroxylan[J].Ultrasonics Sonochemistry,1997,4(4):305-309.

    48. [48]

      黄海潮,王锦旭,潘创,等.超声波辅助过氧化氢法降解坛紫菜多糖及其抗氧化活性的研究[J].南方水产科学,2020,16(1):110-119.

    49. [49]

      袁洪洁.产朊假丝酵母β-葡聚糖的增溶改性及其活性评价研究[D].上海:上海应用技术大学,2021.

    50. [50]

      李连启,刘娜女,杜柯,等.超声提取对鸡腿菇多糖AP1结构的影响[J].陕西师范大学学报(自然科学版),2011,39(3):32-36.

    51. [51]

      刘娜女,张静,孙润广,等.超声对鸡腿菇多糖结构及生物活性的影响[J].化学学报,2011,69(15):1824-1832.

    52. [52]

      CZECHOWSKA-BISKUP R,ROKITA B,LOTFY S,et al.Degradation of chitosan and starch by 360-kHz ultrasound[J].Carbohydrate Polymers,2005,60(2):175-184.

    53. [53]

      刘娜女.超声对鸡腿菇多糖结构和活性影响机理及构效关系研究[D].西安:陕西师范大学,2011.

    54. [54]

      刘娜女,张静,李岱,等.利用傅里叶红外光谱和原子力显微镜研究超声提取对鸡腿菇多糖结构的影响[J].生物加工过程,2010,8(1):56-60.

    55. [55]

      CHEUNG Y C,YIN J Y,WU J Y.Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J].Carbohydrate Polymers,2018,195:298-302.

    56. [56]

      夏强,黄丹菲,余强,等.超声解聚对大粒车前子多糖流变性质、溶液构象及活性的影响[J].食品工业科技,2016,37(17):80-85.

    57. [57]

      王博.超声萃取对茯苓菌核多糖提取率及结构影响的研究[D].西安:陕西师范大学,2008.

    58. [58]

      王博,孙润广,张静.超声波强化提取对茯苓水溶性多糖结构影响的研究[J].应用声学,2009,28(3):195-202.

    59. [59]

      赵凯.超声波对麦冬多糖的提取率、结构及抗氧化活性的影响[D].西安:陕西师范大学,2011.

    60. [60]

      严碧歌,赵凯,杜柯.超声波提取对麦冬多糖结构和抗氧化活性的影响[J].压电与声光,2011,33(6):859-862.

    61. [61]

      ZHU J,LI L,CHEN L,et al.Study on supramolecular structural changes of ultrasonic treated potato starch granules[J].Food Hydrocolloids,2012,29(1):116-122.

    62. [62]

      XIAO J R,CHEN X,ZHAN Q P,et al.Effects of ultrasound on the degradation kinetics,physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide[J].Ultrasonics Sonochemistry,2022,82:105901.

    63. [63]

      叶君,梁文芷,范佩明,等.超声波处理引起纸浆纤维素结晶度变化[J].广东造纸,1999,18(2):6-10.

    64. [64]

      熊犍,叶君,梁文芷.超声方法对纤维素超分子结构的影响[J].声学学报,1999,24(1):66-70.

    65. [65]

      吴卫成,戴建波,曹艳,等.物理改性对甘薯皮膳食纤维含量、多糖组成及其结构的影响[J].浙江农业学报,2020,32(3):490-498.

    66. [66]

      杨书会.超声辅助纤维素酶提取银耳多糖工艺优化及在蛋白饮料中的应用[D].泰安:山东农业大学,2024.

    67. [67]

      欧阳群富.超声处理对不同晶型淀粉的结构及理化性能的影响[D].长沙:中南林业科技大学,2021.

    68. [68]

      LIU Q M,XU S S,LI L,et al.In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis[J].Carbohydrate Polymers,2017,165:189-196.

    69. [69]

      CARMONA-GARCÍA R,BELLO-PÉREZ L A,AGUIRRE-CRUZ A,et al.Effect of ultrasonic treatment on the morphological,physicochemical,functional,and rheological properties of starches with different granule size[J].Starch-Stärke,2016,68(9/10):972-979.

    70. [70]

      YAN J K,WANG Y Y,MA H L,et al.Ultrasonic effects on the degradation kinetics,preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia[J].Ultrasonics Sonochemistry,2016,29:251-257.

    71. [71]

      JIANG S,WU X T,SHI X P,et al.Extraction of Sanguisorba officinalis L.polysaccharide by ultrasound-assisted extraction:Structural characterization,antioxidant,hemostatic and immunological activity[J].Ultrasonics Sonochemistry,2025,115:107292.

    72. [72]

      EBRINGEROVÁ A,HROMÁDKOVÁ Z,HRÍBALOVÁ V,et al.Effect of ultrasound on the immunogenic corn cob xylan[J].Ultrasonics Sonochemistry,1997,4(4):311-315.

    73. [73]

      郭建行,谢俊杰,阳小雨,等.红枣多糖降解条件优化及抗氧化活性[J].食品研究与开发,2024,45(1):99-106.

    74. [74]

      徐雅琴,刘菲,郭莹莹,等.黑穗醋栗果实超声波降解多糖的结构及抗糖基化活性[J].农业工程学报,2017,33(5):295-300.

    75. [75]

      张海芸,贺亮,李琴,等.超声波法辅助定向降解阿拉伯半乳聚糖的研究[J].林产化学与工业,2018,38(4):61-68.

    76. [76]

      闵婷,孙杰,黄菲,等.超声处理对龙眼果肉多糖理化特征及免疫调节活性的影响[J].现代食品科技,2016,32(5):124-131.

    77. [77]

      WANG X M,ZHANG T Z,ZHANG W F,et al.Antioxidant activity in vitro of polysaccharide extracted by ultrasound with different powers from Ophiopogon japonicas[J].American Journal of Plant Sciences,2018,9(9):1826-1834.

    78. [78]

      赵小丹,刘玉,陶新玉,等.不同相对分子质量的铁皮石斛多糖对细胞免疫活性的影响[J].中国药学杂志,2023,58(11):997-1004.

    79. [79]

      王尧,李福蕊,罗源,等.超声波辅助H2O2-VC降解人参多糖对其结构特征与生物活性的影响[J].食品科学,2023,44(19):82-90.

    80. [80]

      PU Y Y,ZOU Q S,HOU D Z,et al.Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation[J].Carbohydrate Polymers,2017,156:71-76.

    81. [81]

      MACHOVÁ E,KVAPILOVÁ K,KOGAN G,et al.Effect of ultrasonic treatment on the molecular weight of carboxymethylated chitin-glucan complex from Aspergillus niger[J].Ultrasonics Sonochemistry,1999,5(4):169-172.

    82. [82]

      VIJAYALAKSHMI S P,MADRAS G.Effect of temperature on the ultrasonic degradation of polyacrylamide and poly(ethylene oxide)[J].Polymer Degradation and Stability,2004,84(2):341-344.

    83. [83]

      何余堂,潘孝明.植物多糖的结构与活性研究进展[J].食品科学,2010,31(17):493-496.

    84. [84]

      吴兰兰,吴钢,谭强来,等.煮制对多花黄精多糖结构及其体外免疫刺激活性的影响[J].中国食物与营养,2023,29 (6):28-34.

    85. [85]

      ZHONG K,ZHANG Q,TONG L T,et al.Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment[J].Ultrasonics Sonochemistry,2015,23:75-80.

    86. [86]

      方芳,杨丹,张超,等.油茶籽粕多糖超声辅助盐酸降解工艺及动力学的研究[J].中国粮油学报,2022,37(8):188-193.

    87. [87]

      PORTENLÄNGER G,HEUSINGER H.The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes[J].Ultrasonics Sonochemistry,1997,4(2):127-130.

    88. [88]

      ZHOU C S,MA H L.Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis)[J].Journal of Agricultural and Food Chemistry,2006,54(6):2223-2228.

    89. [89]

      李哲斌,杨艳玲.红枣多糖生物活性及开发利用研究进展[J].食品科技,2024,49(11):234-240.

    90. [90]

      ZHANG H X,LIU F F,WU P,et al.Degradation of (1→3)(1→6)-α-D-dextran by ultrasound:Molecular weight,viscosity and kinetics[J].International Journal of Biological Macromolecules,2024,283(Pt 2):137446.

    91. [91]

      WANG H S,CHEN J R,REN P F,et al.Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide[J].Ultrasonics Sonochemistry,2021,70:105355.

    92. [92]

      邱军强,张华,刘迪迪,等.超声波处理对多糖理化性质和生物活性的影响[J].食品研究与开发,2017,38(16):189-193.

    93. [93]

      NACHTIGALL C,ROHM H,JAROS D.Degradation of exopolysaccharides from lactic acid bacteria by thermal,chemical,enzymatic and ultrasound stresses[J].Foods,2021,10(2):396.

    1. [1]

      蒋纬胡颖朱振元 . 阳荷多糖提取工艺优化及其生物活性研究. 轻工学报, 2025, 40(4): 10-19. doi: 10.12187/2025.04.002

    2. [2]

      刘广超邓莎高峄涵吴涛邓锐杰 . 加热卷烟辊压法薄片丝吸湿性影响因素研究. 轻工学报, 2024, 39(5): 109-117. doi: 10.12187/2024.05.013

    3. [3]

      贾尚羲张怡雪石盼盼王昱李可 . 不同时长超声波处理对鹰嘴豆分离蛋白乳化液稳定性的影响. 轻工学报, 2024, 39(5): 40-49. doi: 10.12187/2024.05.005

    4. [4]

      李欣蔚高香兰邓微张宗芮周钢霞 . 基于高通量测序的实仓不同点位稻谷理化性质及真菌群落结构差异比较. 轻工学报, 2025, 40(3): 1-9. doi: 10.12187/2025.03.001

    5. [5]

      杨靖刘广昊王琼波韩丽王清福赵志伟李蕾王秋领 . 微生物发酵开发杏果渣香料的研究. 轻工学报, 2024, 0(0): -.

    6. [6]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

    7. [7]

      张馨月闫倩楠杨泽豪于淼马挺军 . 虾青素鸡蛋的营养活性及风味研究. 轻工学报, 2025, 40(1): 41-48. doi: 10.12187/2025.01.005

    8. [8]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用研究现状与展望. 轻工学报, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009

    9. [9]

      李浩佳贺诗华曹艺泽郭西玉朱由余赵玮钦黄淳 . 以碳量子点为荧光信号的生物传感器构建及其在金银花 Pb2+ 检测中的应用. 轻工学报, 2024, 0(0): -.

    10. [10]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 0(0): -.

    11. [11]

      张嫚张国治张康逸何梦影 . 超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究. 轻工学报, 2024, 39(5): 29-39. doi: 10.12187/2024.05.004

    12. [12]

      李文瀚刘紫韫姜瑜倩李喜宏班兆军 . 臭氧处理对红灯樱桃保鲜效果的影响. 轻工学报, 2025, 0(0): -.

    13. [13]

      李文瀚刘紫韫姜瑜倩李喜宏班兆军 . 臭氧处理对红灯樱桃保鲜效果的影响. 轻工学报, 2025, 40(4): 52-59. doi: 10.12187/2025.04.006

    14. [14]

      尹思睿冯娇杨晓宇李良 . 植物蛋白复配对植物肉品质的影响. 轻工学报, 2024, 39(5): 18-28. doi: 10.12187/2024.05.003

    15. [15]

      赵悦闫清泉李玲玉司阔林宗学醒 . 钙螯合盐对牛奶-豌豆双蛋白再制干酪品质的影响. 轻工学报, 2024, 39(5): 1-8. doi: 10.12187/2024.05.001

    16. [16]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    17. [17]

      陈昆黄福利吴承澄谢一飞李凯斌柳胜耀戚祖强唐伟 . 高发射率发热针对加热卷烟温度及气溶胶释放的影响. 轻工学报, 2024, 0(0): -.

    18. [18]

      李杉姜千一孙冰华温纪平王晓曦 . 麦麸糊粉层粉对面团及手抓饼品质特性的影响. 轻工学报, 2024, 0(0): -.

    19. [19]

      陈昆黄福利吴承澄谢一飞李凯斌柳胜耀戚祖强唐伟 . 高发射率发热针对加热卷烟温度及气溶胶释放的影响. 轻工学报, 2024, 39(6): 108-115. doi: 10.12187/2024.06.013

    20. [20]

      张晓晴潘俊坤吕真真刘杰超焦中高 . 不同前处理工艺对桃果酒品质的影响. 轻工学报, 2025, 40(1): 1-10. doi: 10.12187/2025.01.001

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  235
  • 引证文献数: 0
文章相关
  • 收稿日期:  2024-10-19
  • 修回日期:  2025-01-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
郭向阳, 王璐璐, 马景可, 等. 超声波降解多糖的作用表现、影响因素及机理研究进展[J]. 轻工学报, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005
引用本文: 郭向阳, 王璐璐, 马景可, 等. 超声波降解多糖的作用表现、影响因素及机理研究进展[J]. 轻工学报, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005
GUO Xiangyang, WANG Lulu, MA Jingke and et al. Research progress on ultrasonic degradation of polysaccharides: Effects,influencing factors,and mechanisms[J]. Journal of Light Industry, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005
Citation: GUO Xiangyang, WANG Lulu, MA Jingke and et al. Research progress on ultrasonic degradation of polysaccharides: Effects,influencing factors,and mechanisms[J]. Journal of Light Industry, 2025, 40(4): 41-51. doi: 10.12187/2025.04.005

超声波降解多糖的作用表现、影响因素及机理研究进展

    作者简介:郭向阳(1987—),男,河南省信阳市人,信阳师范大学副教授,博士(后),主要研究方向为食品化学与资源利用。E-mail:xiangyang.guo@ahau.edu.cn
  • 1. 信阳师范大学 茶学与食品学院, 河南 信阳 464000;
  • 2. 大别山实验室, 河南 信阳 464000;
  • 3. 深圳大学 化学与环境工程学院, 广东 深圳 518060;
  • 4. 山西农业大学 园艺学院, 山西 太谷 030801
基金项目:  国家自然科学基金面上项目(32072634)河南省高等学校重点科研项目(24B210015)

摘要: 多糖的生物活性与其相对分子质量密切相关,而具有简单、快速、环保、高效等优点的超声波法在降解多糖并增强其生物活性方面日益受到研究者的重视。对近年来超声波降解多糖的作用表现、影响因素及机理研究进行综述,认为:超声波降解可有效改变多糖的物化性质,降低其相对分子质量、溶液黏度及分子空间尺寸,提升其溶解度;还可引发单糖组成、单糖结构,以及分子空间构型、结晶状态等多糖结构的变化,增强多糖的抗氧化、免疫调节、降血糖等生物活性。超声波降解多糖的机理涵盖机械断键、空穴效应及自由基氧化还原反应,且受多糖相对分子质量、温度、超声功率、超声频率等多种因素的综合影响。实际应用中应结合多糖种类与需求优化参数,以调控降解过程。目前,超声波降解多糖的研究种类较单一,未来研究将集中在超声波降解多糖的构效关系与机理解析、同源类多糖降解条件与极限值探索、糖苷键定向裂解技术优化、多糖结构与生物活性关联性分析、降解条件系统拓展、动力学模型精准构建及工业化应用等方面,以促进超声波法在多糖降解中的应用,实现对多糖降解过程的精准调控。

English Abstract

参考文献 (93) 相关文章 (20)

目录

/

返回文章