JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

国内外烟蒂资源化利用研究现状与展望

王金棒 邱纪青 汪志波 张仕华 郑路 洪群业 刘亚丽 薛飞

王金棒, 邱纪青, 汪志波, 等. 国内外烟蒂资源化利用研究现状与展望[J]. 轻工学报, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009
引用本文: 王金棒, 邱纪青, 汪志波, 等. 国内外烟蒂资源化利用研究现状与展望[J]. 轻工学报, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009
WANG Jinbang, QIU Jiqing, WANG Zhibo, et al. Research status and prospect of resource utilization of cigarette butts[J]. Journal of Light Industry, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009
Citation: WANG Jinbang, QIU Jiqing, WANG Zhibo, et al. Research status and prospect of resource utilization of cigarette butts[J]. Journal of Light Industry, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009

国内外烟蒂资源化利用研究现状与展望

    作者简介: 王金棒(1987-),男,河南省周口市人,中国烟草总公司郑州烟草研究院高级工程师,博士,主要研究方向为烟草科技情报、科技政策、科技成果评估与评价.;
  • 基金项目: 中国烟草总公司科技重大专项项目(110202101031(SJ-02))

  • 中图分类号: TS457

Research status and prospect of resource utilization of cigarette butts

  • Received Date: 2021-04-08

    CLC number: TS457

  • 摘要: 烟蒂是卷烟燃吸后的终结产物,开展烟蒂资源化综合利用对于解决环境污染问题及推进资源有效利用具有重要意义.对烟蒂资源化利用现状相关文献进行梳理,指出:1)在建筑材料领域,烟蒂所制备产品主要为轻质黏土砖、沥青混凝土和吸音/吸波材料,烟蒂的处理量相对较大,且产品具有质轻、隔热的特点;2)在碳材料领域,烟蒂所制备产品主要为吸附材料和电化学储能材料,后者为烟蒂高值化利用的重要途径;3)烟蒂所吸附化学成分可制备产品主要包括金属腐蚀抑制剂、蚊虫杀虫剂等,利用烟蒂提取化工原料的研究相对偏少;4)烟蒂醋酸纤维可通过硅烷化或键合聚多巴胺改性制备油水分离材料,由醋酸纤维制备的纤维素薄膜或纳米晶均表现出优异的水体净化性能.未来可完善吸烟区、灭烟处等基础设施以利于烟蒂的有效收集、从“成本-环境-效益”三方面进行综合评估以缩短技术产业化的转化周期,以及在开发可降解滤材、可重复使用滤嘴等方面开展深入研究,以推动烟蒂资源化利用的产业化.
    1. [1]

      MARINELLO S, LOLLI F, GAMBERINI R, et al. A second life for cigarette butts? A review of recycling solutions[J].Journal of Hazardous Materials, 2020, 384:121245.

    2. [2]

      HAMZAH Y, UMAR L.Preparation of creating active carbon from cigarette filter waste using microwave-induced KOH activation[J].Journal of Physics(Conference Series),2017,853:012027.

    3. [3]

      GRANADOS P S, FULTON L, PATLAN E N, et al.Global health perspectives on cigarette butts and the environment[J].International Journal of Environmental Research and Public Health, 2019, 16(10):1858.

    4. [4]

      FISCHER S, THUMMLER K, VOLKERT B, et al. Properties and applications of cellulose acetate[J]. Macromolecular Symposia, 2008, 262(1):89.

    5. [5]

      ARAUJO M C B, COSTA M F.A critical review of the issue of cigarette butt pollution in coastal environments[J].Environmental Research 2019, 172:137.

    6. [6]

      SINGER A C, BONANOMI G, INCERTI G, et al. Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR[J]. PLOS ONE, 2015, 10(1):e0117393.

    7. [7]

      YADAV N, HAKKARAINEN M. Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation[J].Chemosphere, 2021, 265:128731.

    8. [8]

      JOLY F X, COULIS M. Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments[J]. Waste Management, 2018, 72:349.

    9. [9]

      KURMUS H, MOHAJERANI A. The toxicity and valorization options of cigarette butts[J]. Waste Management, 2020, 104:104.

    10. [10]

      SELMAR D, RADWAN A, ABDALLA N, et al. Uptake of nicotine from discarded cigarette butts:a so far unconsidered path of contamination of plant-derived commodities[J]. Environmental Pollution, 2018, 238:972.

    11. [11]

      NOVOTNY T E, HARDIN S N, HOVDA L R, et al. Tobacco and cigarette butt consumption in humans and animals[J]. Tobacco Control, 2011,20(S1):i17.

    12. [12]

      ALBERTI S, SOTIROPOULOU M, FERNANDEZ E, et al. UV-254 degradation of nicotine in natural waters and leachates produced from cigarette butts and heat-not-burn tobacco products[J]. Environmental Research, 2021, 194:110695.

    13. [13]

      DOBARADARAN S, SOLEIMANI F, AKHBARIZADEH R, et al. Environmental fate of cigarette butts and their toxicity in aquatic organisms:a comprehensive systematic review[J]. Environmental Research, 2021, 195:110881.

    14. [14]

      QUEMENEUR M, CHIFFLET S, AKROUT F, et al. Impact of cigarette butts on microbial diversity and dissolved trace metals in coastal marine sediment, Estuarine[J].Coastal and Shelf Science, 2020, 240:106785.

    15. [15]

      MOHAJERANI A, KADIR A A, RODDICK F, et al. Density, strength, thermal conductivity and leachate characteristics of light-weight fired clay[J]. International Journal of Civil and Environmental Engineering, 2010,2(4):179.

    16. [16]

      KADIR A A, MOHAJERANI A. Possible utilization of cigarette butts in light-weight fired clay bricks[J].International Journal of Civil and Environmental Engineering, 2010,2(3):118.

    17. [17]

      KADIR A A, MOHAJERANI A. Recycling cigarette butts in lightweight fired clay bricks[J]. Proceedings of the Institution of Civil Engineers-Construction Materials, 2011,164(5):219.

    18. [18]

      MOHAJERANI A, KADIR A A, LAROBINA L. A practical proposal for solving the world's cigarette butt problem:recycling in fired clay bricks[J]. Waste Management, 2016, 52:228.

    19. [19]

      SARANI N A, KADIR A A. Experimental and theoretical analysis on thermal conductivity of fired clay bricks incorporated with cigarette butts[J].Applied Mechanics and Materials, 2013, 465/466:872.

    20. [20]

      KURMUS H, MOHAJERANI A. Recycling of cigarette butts in fired clay bricks:a new laboratory investigation[J]. Materials, 2020, 13(3):790.

    21. [21]

      KADIR A A, MOHAJERANI A. Effect of heating rate on gas emissions and properties of fired clay bricks and fired clay bricks incorporated with cigarette butts[J].Applied Clay Science, 2015, 104:269.

    22. [22]

      SARANI N A, KADIR A A. Thermal conductivity of fired clay bricks incorporated with cigarette butts[J]. Advanced Materials Research, 2013, 690/691/692/693:919.

    23. [23]

      MOHAJERANI A, KADIR A A, RODDICK F, et al. Density, strength, thermal conductivity and leachate characteristics of light-weight fired clay bricks incorporating cigarette butts[J]. International Journal of Civil and Environmental Engineering, 2010, 2(4):179.

    24. [24]

      KURMUS H, MOHAJERANI A. Energy savings, thermal conductivity, micro and macro structural analysis of fired clay bricks incorporating cigarette butts[J]. Construction and Building Materials, 2021, 283:122755.

    25. [25]

      MOHAJERANI A, HUI S Q, MIRZABABAEI M, et al.Amazing types, properties, and applications of fibres in construction materials[J].Materials (Basel), 2019,12(16):2513.

    26. [26]

      MOHAJERANI A, TANRIVERDI Y, NGUYEN B T, et al. Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts[J].Construction and Building Materials, 2017, 153:69.

    27. [27]

      RAHMAN M T, MOHAJERANI A.Thermal conductivity and environmental aspects of cigarette butt modified asphalt[J].Case Studies in Construction Materials, 2021,15:e00569.

    28. [28]

      RAHMAN M T, MOHAJERANI A, GIUSTOZZI F. Possible recycling of cigarette butts as fiber modifier in bitumen for asphalt concrete[J]. Materials, 2020, 13(3):734.

    29. [29]

      RAHMAN M T, MOHAJERANI A. Use of bitumen encapsulated cigarette butts in stone mastic asphalt[J].Construction and Building Materials, 2020, 261:120530.

    30. [30]

      RAHMAN M T, MOHAJERANI A, GIUSTOZZI F. Possible use of cigarette butt fiber modified bitumen in stone mastic asphalt[J].Construction and Building Materials, 2020, 263:120134.

    31. [31]

      ESCOBAR V G, SANZ R M. Acoustical performance of samples prepared with cigarette butts[J]. Applied Acoustics,2017, 125:166.

    32. [32]

      ESCOBAR V G, GOZALO G R, PEREZ C J. Variability and performance study of the sound absorption of used cigarette butts[J]. Materials, 2019, 12(16):2584.

    33. [33]

      SANZ R M, ESCOBAR V G, RODRIGUEZ J M M. Potential use of cigarette filters as sound porous absorber[J].Applied Acoustics, 2018, 129:86.

    34. [34]

      WANG C H, DING Y J, YUAN Y, et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption[J].Journal of Materials Chemistry C, 2015,3(45):11893.

    35. [35]

      KAGAWA S, SUZUKI K, HOSAKA L. Preparation of activated carbons from cigarette butts[J]. Kagaku Kogaku Ronbunshu, 2005, 31(1):80.

    36. [36]

      LIMA H H C, MANIEZZO R S, KUPFER V L, et al. Hydrochars based on cigarette butts as a recycled material for the adsorption of pollutants[J].Journal of Environmental Chemical Engineering, 2018,6(6):7054.

    37. [37]

      张星, 梁勇, 肖彩玲, 等.基于烟蒂制备的活性炭材料用于铅离子的吸附[C]//华侨大学.第五届全国原子光谱及相关技术学术会议.泉州:[出版社不详], 2018.

    38. [38]

      SOLTANI S M, YAZDI S K, HOSSEINI S, et al. Lead removal from aqueous solution using non-modified and nitric acid-modified charred carbon from the pyrolysis of used cigarette filters[J]. Desalination and Water Treatment, 2015, 53(1):126.

    39. [39]

      PU D D, KOU Y, ZHANG L, et al. Waste cigarette filters activated carbon as a novel sorbent for uranium removal[J].Journal of Radioanalytical and Nuclear Chemistry,2019, 320:725.

    40. [40]

      LI L X, JIA C, ZHU X D, et al. Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents[J]. Journal of Cleaner Production, 2020, 256:120326.

    41. [41]

      SUN H X, LA P Q, YANG R X, et al. Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine[J]. Journal of Hazardous Materials, 2017, 321:210.

    42. [42]

      CHEN A B, LI Y L, YU Y F, et al. Mesoporous carbonaceous materials prepared from used cigarette filters for efficient phenol adsorption and CO2 capture[J].RSC Advances, 2015,5(130):107299.

    43. [43]

      GUPTA A, PANDEY O P. Visible irradiation induced photodegradation by NbC/C nanocomposite derived from smoked cigarette litter (filters)[J]. Solar Energy, 2018, 163:167.

    44. [44]

      ZHANG Q L, CHENG Y L, FANG C Q, et al. Facile synthesis of porous carbon/Fe3O4 composites derived from waste cellulose acetate by one-step carbothermal method as a recyclable adsorbent for dyes[J]. Journal of Materials Research and Technology, 2020,9(3):3384.

    45. [45]

      吕莎.基于废弃烟蒂的铁/碳材料制备及其在三氯乙烯污染修复中的应用[D].大连:大连理工大学, 2017.

    46. [46]

      LI S H, SHI C L, WANG Y Z, et al. New efficient selective adsorbent of tobacco specific nitrosamines derived from discarded cigarette filters[J]. Microporous and Mesoporous Materials, 2019, 284:393.

    47. [47]

      ZHANG Y K, GAO L, HONG Y, et al. New environmental selective micro-mesoporous carbonaceous sorbent for eliminating tobacco specific nitrosamines and lead ion[J]. Microporous and Mesoporous Materials, 2021, 318:111037.

    48. [48]

      BLANKENSHIP T S, MOKAYA R.Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity[J]. Energy & Environmental Science, 2017,10(12):2552.

    49. [49]

      ZHU W J, SHEN X H, OU R, et al. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent[J/OL].Chinese Journal of Chemical Engineering, 2021.[2021-04-08].http://doi.org/10.1016/j.cjche.2021.01.012.

    50. [50]

      LEE M, KIM G P, SONG H D, et al. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode[J].Nanotechnology,2014,25:345601.

    51. [51]

      CHENG Y L, ZHANG Q L, FANG C Q, et al. Synthesis of N-doped porous carbon materials derived from waste cellulose acetate fiber via urea activation and its potential application in supercapacitors[J]. Journal of the Electrochemical Society, 2019, 166:A1231.

    52. [52]

      MENG Q, CHEN W J, WU L Z, et al. A strategy of making waste profitable nitrogen doped cigarette butt derived carbon for high performance supercapacitors[J].Energy, 2019, 189:116241.

    53. [53]

      XIONG Q C, BAI Q H, LI C, et al. Nitrogen-doped hierarchical porous carbons from used cigarette filters for supercapacitors[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95:315.

    54. [54]

      WANG Y Q, JIANG M H, YANG Y L, et al. Hybrid electrode material of vanadium nitride and carbon fiber with cigarette butt/metal ions wastes as the precursor for supercapacitors[J]. Electrochimica Acta, 2016, 222:1914.

    55. [55]

      YU C Y, HOU H Y, LIU X X, et al. The recovery of the waste cigarette butts for N-doped carbon anode in lithium ion battery[J]. Frontiers in Materials, 2018,5:63.

    56. [56]

      HOU H Y, YU C Y, LIU X X, et al. The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode[J].Chemical Papers, 2019, 73:1237.

    57. [57]

      XU H B, LIU Y, BAI Q Y, et al. Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(8):3558.

    58. [58]

      KIM G P, LEE M, SONG H D, et al. Highly efficient supporting material derived from used cigarette filter for oxygen reduction reaction[J]. Catalysis Communications, 2016,7(8):1.

    59. [59]

      BILGE S, BAKIRHAN N K, DONAR Y O, et al. Turning toxic cigarette butt waste into the sensor material for the sensitive determination of antihypertensive drug trandolapril from its dosage form and biological samples[J]. Sensors and Actuators B:Chemical,2019,296:126626.

    60. [60]

      BANI R, DEVULAPALLI N P, DADIGALA R, et al. Facile conversion of toxic cigarette butts to N,S-codoped carbon dots and their application in fluorescent film, security ink, bioimaging, sensing and logic gate operation[J]. ACS Omega, 2018,3(10):13454.

    61. [61]

      ZHOU Z J, LIU X W, LI C P, et al. Flaming combustion and smoldering of active impregnated cigarette butts:a novel method for synthesis of nanostructured MnOx catalysts for NOx reduction[J]. Fuel, 2020, 277:118230.

    62. [62]

      黄登峰.烟蒂回收利用研究[D].齐齐哈尔:齐齐哈尔大学, 2012.

    63. [63]

      内蒙古昆明卷烟有限责任公司.从废弃烟蒂中制备具有致香特性的焦油提取物的方法及其在卷烟中的应用:201911179300.X[P]. 2019-11-27.

    64. [64]

      SUNDARARAJAN J, CHAR T L R. Inhibitors for aluminium in acid solutions[J]. Anti-Corrosion Methods and Materials,1960,7(7):207.

    65. [65]

      SUBRAHMANYAM D V, CHAR T L R.Nicotinic acid as an inhibitor for corrosion of mild steel in hydrochloric acid solutions[J].Anti-Corrosion Methods and Materials,1967,14(11):19.

    66. [66]

      JU H, LI Y. Nicotinic acid as a nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings on steels in diluted hydrochloric acid[J]. Corrosion Science, 2007,49(11):4185.

    67. [67]

      PATEL N K, FRANCO J. Inhibitive effect of nicotine and related compounds toward corrosion of copper in potassium persulphate solutions[J]. Croatica Chemica Acta, 1974,46(4):261.

    68. [68]

      FRAUNHOFER J A V, BALTIMORE M. Tobacco extract composition and method:US5435941[P].1995-07-25.

    69. [69]

      DAVIS G D, KREBS L K, DACRES C M, et al. The use of tobacco extracts as corrosion inhibitors[J]. Texas:Corrosion, 2001(1):1558.

    70. [70]

      WANG H F, GAO M D, GUO Y, et al. A natural extract of tobacco rob as scale and corrosion inhibitor in artificial seawater[J]. Desalination, 2016,398:198.

    71. [71]

      MANN C A, LAUER B E, HULTIN C T. Organic inhibitors of corrosion aromatic amines[J].Industrial & Engineering Chemistry, 1936,28(9):1048.

    72. [72]

      MANN C A, LAUER B E, HULTIN C T. Organic inhibitors of corrosion, aliphatic amines[J].Industrial & Engineering Chemistry, 1936,28(2):159.

    73. [73]

      ZHAO J, ZHANG N S, QU C T, et al. Cigarette butts and their application in corrosion inhibition for N80 steel at 90℃ in a hydrochloric acid solution[J]. Industrial & Engineering Chemistry Research, 2010, 49(8):3986.

    74. [74]

      OLIVIERO L, BARBIER J, DUPREZ D. Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media[J]. Applied Catalysis B:Environmental, 2003, 40(3):163.

    75. [75]

      ZHAO J, ZHANG N S, QU C T, et al. Comparison of the corrosion inhibitive effect of anaerobic and aerobic cigarette butts water extracts on N80 steel at 90℃ in hydrochloric acid solution[J]. Industrial & Engineering Chemistry Research, 2010, 49(24):12452.

    76. [76]

      ZHANG J T, ZHAO J, ZHANG N S, et al. Synergized action of CuCl on recycled cigarette butts as corrosion inhibitor for N80 steel at 90℃ in 15% HCl[J]. Industrial & Engineering Chemistry Research,2011,50(12):7264.

    77. [77]

      MICEVSKA T, WARNE M S J, PABLO F, et al. Variation in, and causes of, toxicity of cigarette butts to a cladoceran and microtox[J]. Archives of Environmental Contamination and Toxicology, 2006, 50(2):205.

    78. [78]

      DIENG H, RAJASAYGAR S, AHMAD A H, et al. Turning cigarette butt waste into an alternative control tool against an insecticide-resistant mosquito vector[J]. Acta Tropica, 2013, 128(3):584.

    79. [79]

      DIENG H, SAIFUR R G M, AHMAD A H, et al. Discarded cigarette butts attract femals and kill the progeny of aedes albopictus[J]. Journal of the American Mosquito Control Association, 2011, 27(3):263.

    80. [80]

      DIENG H, RAJASAYGAR S, AHMAD A H, et al. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera:Culicidae)[J]. Acta Tropica, 2014, 130:123.

    81. [81]

      MURUGAN K,SURESH U,PANNEERSELVAM C, et al. Managing wastes as green resources:cigarette butt-synthesized pesticides are highly toxic to malaria vectors with little impact on predatory copepods[J]. Environmental Science and Pollution Research,2018,25(11):10456.

    82. [82]

      OGUNDARE S A, MOODLEY V, ZYL W E. Nanocrystalline cellulose isolated from discarded cigarette filters[J].Carbohydrate Polymers, 2017, 175:273.

    83. [83]

      DANSO E A, BAGHERI A, BHATNAGAR A. Facile functionalization of cellulose from discarded cigarette butts for the removal of diclofenac from water[J]. Carbohydrate Polymers, 2019, 219:46.

    84. [84]

      昆明理工大学. 一种基于烟蒂改性制备阳离子纤维素醚絮凝剂的方法:201711007949.4[P]. 2017-10-25.

    85. [85]

      河南农业大学. 一种利用烟蒂、残次卷烟滤嘴或废弃醋酸纤维制备的滤料、其制备方法及应用:201910679928.X[P]. 2019-07-26.

    86. [86]

      ARROYO F D, GUERRERO C F C, SILVA U L. Thin films of cellulose acetate nanofibers from cigarette butt waste[J]. Progress in Rubber, Plastics and Recycling Technology, 2019, 36(1):3.

    87. [87]

      DOROSTI M, BAGHDADI M, NASIMI S. A continuous electroreduction cell composed of palladium nanocatalyst immobilized on discarded cigarette filters as an active bed for Cr(Ⅵ) removal from groundwater[J]. Journal of Environmental Management, 2020, 264:110409.

    88. [88]

      XIE Z T, ASOH T A, UYAMA H. Superfast flow reactor derived from the used cigarette filter for the degradation of pollutants in water[J]. Journal of Hazardous Materials, 2020, 400:123303.

    89. [89]

      SUN H X, LI Y Z, ZHU Z Q, et al. Photothermal conversion material derived from used cigarette filters for solar steam generation[J]. ChemSusChem, 2019, 12(18):4257.

    90. [90]

      TEIXEIRA M B H, DUARTE M A B, GARCEZ L R, et al. Process development for cigarette butts recycling into cellulose pulp[J]. Waste Management, 2017, 60:140.

    91. [91]

      HUANG F L, XU Y F, PENG B, et al. Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery[J].ACS Sustainable Chemistry & Engineering, 2015, 3(5):932.

    92. [92]

      LIU W M, CUI M K, SHEN Y Q, et al. Waste cigarette filter as nanofibrous membranes for on-demand immiscible oil/water mixtures and emulsions separation[J]. Journal of Colloid and Interface Science, 2019, 549:114.

    93. [93]

      LIU C, CHEN B B, YANG J, et al. One-step fabrication of superhydrophobic and superoleophilic cigarette filters for oil-water separation[J]. Journal of Adhesion Science and Technology, 2015,29(22):2399.

    94. [94]

      XIONG Q C, BAI Q H, LI C, et al. Cost-effective,highly selective and environmentally friendly superhydrophobic absorbent from cigarette filters for oil spillage clean up[J].Polymers, 2018,10(10):1101.

    95. [95]

      OU J F, WAN B B, WANG F J, et al. Superhydrophobic fibers from cigarette filters for oil spill cleanup[J].RSC Advances,2016,6(50):44469.

    96. [96]

      IFELEBUEGU A O, LALE E E, MBANASO F U, et al. Facile fabrication of recyclable, superhydrophobic, and oleophilic sorbent from waste cigarette filters for the sequestration of oil pollutants from an aqueous environment[J]. Processes, 2018,6(9):140.

    97. [97]

      LIU Y N, QU R, LI X, et al. Discarded cigarette butts regenerated hydrophobic-oleophilic materials for both immiscible and emulsified oil/water separation through a wettability reversal strategy[J]. Applied Surface Science, 2020, 532:147350.

    1. [1]

      邱勇孟志容林祥志 . 牡蛎壳粉资源化利用研究进展. 轻工学报, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005

    2. [2]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

    3. [3]

      兰玉婷张逸飞郭佳慧尚欣欣刘影梁文魁王璐关国平 . 面向皮肤光电治疗术后热损伤护理的凝胶贴膜材料研究. 轻工学报, 2025, 40(1): 120-126. doi: 10.12187/2025.01.014

    4. [4]

      李浩佳贺诗华曹艺泽郭西玉朱由余赵玮钦黄淳 . 以碳量子点为荧光信号的生物传感器构建及其在金银花 Pb2+ 检测中的应用. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  71
  • 文章访问数:  5401
  • 引证文献数: 0
文章相关
  • 收稿日期:  2021-04-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
王金棒, 邱纪青, 汪志波, 等. 国内外烟蒂资源化利用研究现状与展望[J]. 轻工学报, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009
引用本文: 王金棒, 邱纪青, 汪志波, 等. 国内外烟蒂资源化利用研究现状与展望[J]. 轻工学报, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009
WANG Jinbang, QIU Jiqing, WANG Zhibo, et al. Research status and prospect of resource utilization of cigarette butts[J]. Journal of Light Industry, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009
Citation: WANG Jinbang, QIU Jiqing, WANG Zhibo, et al. Research status and prospect of resource utilization of cigarette butts[J]. Journal of Light Industry, 2021, 36(4): 63-77. doi: 10.12187/2021.04.009

国内外烟蒂资源化利用研究现状与展望

    作者简介:王金棒(1987-),男,河南省周口市人,中国烟草总公司郑州烟草研究院高级工程师,博士,主要研究方向为烟草科技情报、科技政策、科技成果评估与评价.
  • 1. 中国烟草总公司郑州烟草研究院, 河南 郑州 450001;
  • 2. 中国科学院 兰州化学物理研究所, 甘肃 兰州 730000
基金项目:  中国烟草总公司科技重大专项项目(110202101031(SJ-02))

摘要: 烟蒂是卷烟燃吸后的终结产物,开展烟蒂资源化综合利用对于解决环境污染问题及推进资源有效利用具有重要意义.对烟蒂资源化利用现状相关文献进行梳理,指出:1)在建筑材料领域,烟蒂所制备产品主要为轻质黏土砖、沥青混凝土和吸音/吸波材料,烟蒂的处理量相对较大,且产品具有质轻、隔热的特点;2)在碳材料领域,烟蒂所制备产品主要为吸附材料和电化学储能材料,后者为烟蒂高值化利用的重要途径;3)烟蒂所吸附化学成分可制备产品主要包括金属腐蚀抑制剂、蚊虫杀虫剂等,利用烟蒂提取化工原料的研究相对偏少;4)烟蒂醋酸纤维可通过硅烷化或键合聚多巴胺改性制备油水分离材料,由醋酸纤维制备的纤维素薄膜或纳米晶均表现出优异的水体净化性能.未来可完善吸烟区、灭烟处等基础设施以利于烟蒂的有效收集、从“成本-环境-效益”三方面进行综合评估以缩短技术产业化的转化周期,以及在开发可降解滤材、可重复使用滤嘴等方面开展深入研究,以推动烟蒂资源化利用的产业化.

English Abstract

参考文献 (97) 相关文章 (4)

目录

/

返回文章