JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

哌啶类离子液体表面活性剂为模板制备介孔二氧化硅

杨许召 白亚榕 张晨龙 李庆 王军

杨许召, 白亚榕, 张晨龙, 等. 哌啶类离子液体表面活性剂为模板制备介孔二氧化硅[J]. 轻工学报, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015
引用本文: 杨许召, 白亚榕, 张晨龙, 等. 哌啶类离子液体表面活性剂为模板制备介孔二氧化硅[J]. 轻工学报, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015
YANG Xuzhao, BAI Yarong, ZHANG Chenlong, et al. Preparation of mesoporous silica with piperidinium-based ionic liquid surfactant as templates[J]. Journal of Light Industry, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015
Citation: YANG Xuzhao, BAI Yarong, ZHANG Chenlong, et al. Preparation of mesoporous silica with piperidinium-based ionic liquid surfactant as templates[J]. Journal of Light Industry, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015

哌啶类离子液体表面活性剂为模板制备介孔二氧化硅

    作者简介: 杨许召(1978—),男,河南省汝州市人,郑州轻工业大学副教授,主要研究方向为精细化工。E-mail:yangxz@zzuli.edu.cn;
  • 基金项目: 郑州市科技攻关项目(141PQYJS555)
    郑州轻工业大学博士研究基金项目(2020BSJJ018)
    河南省科技攻关项目(162102210056)

  • 中图分类号: O611.62;TQ127.2

Preparation of mesoporous silica with piperidinium-based ionic liquid surfactant as templates

  • Received Date: 2021-04-17
    Accepted Date: 2021-06-17

    CLC number: O611.62;TQ127.2

  • 摘要: 以哌啶类离子液体表面活性剂N-十六烷基-N-甲基哌啶溴盐([C16MPip]Br)为模板,正硅酸乙酯(TEOS)为硅源,在碱性环境下,通过水热合成法制备出形貌可控的介孔二氧化硅。研究了[C16MPip]Br/TEOS和NH4OH/TEOS物质的量之比、水合温度、煅烧温度等反应条件对介孔二氧化硅结构的影响。采用小角X射线衍射(XRD)、傅里叶红外(FTIR)、N2吸附-脱附和透射电子显微镜(TEM)对所制备的介孔二氧化硅样品进行了结构表征。结果表明,介孔二氧化硅的结构受反应条件的影响,在[C16MPip]Br/TEOS和NH4OH/TEOS物质的量之比分别为0.32和13,水合温度为25℃,煅烧温度为550℃时,[C16MPip]Br作为模板可以制备出规则有序的介孔二氧化硅MCM-41,其比表面积约为1000 m2/g,孔径约为2.5 nm。
    1. [1]

      ZHU K,POZGAN F,D'SOUZA L,et al.Ionic liquid templated high surface area mesoporous silica and Ru-SiO2[J]. Microporous and Mesoporous Materials,2006,91(1/2/3):40-46.

    2. [2]

      ZHOU Y,SCHATTKA J H,ANTONIETTI M.Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique[J]. Nano Letters,2004,4(3):477-481.

    3. [3]

      MELENDEZ-ORTIZ H I,PERERA-MERCADO Y A,GARCIA-CERDA L A,et al.Influence of the reaction conditions on the thermal stability of mesoporous MCM-48 silica obtained at room temperature[J]. Ceramics International, 2014,40(3):4155-4161.

    4. [4]

      SAPUTRA H,OTHMAN R,SUTJIPTO A G E,et al.Gel-like properties of MCM-41 material and its transformation to MCM-50 in a caustic alkaline surround[J]. Materials Research Bulletin,2012,47(3):732-736.

    5. [5]

      DIAZ I,PEREZ-PARIENTE J,TERASAKI O.Structural study by transmission and scanning electron microscopy of the time-dependent structural change in M41S mesoporous silica (MCM-41 to MCM-48, and MCM-50)[J].Journal of Materials Chemistry,2004,14(1):48-53.

    6. [6]

      SIRINWARANON P,ATONG D,SRICHAROENCHAIKUL V.Gasification of torrefied cassava rhizome with Ni/MCM-41 catalyst derived from illite waste[J].Energy Reports,2020,6:537-547.

    7. [7]

      GOYAL N,BULASARA V K,LI G,et al.Rapid uptake of atrazine from aqueous phase by thermally activated MCM-41[J]. Science of The Total Environment, 2021,753:142091.

    8. [8]

      ROIK N V,BELYAKOVA L A,DZIAZKO M O.Selective sorptive removal of Methyl Red from individual and binary component solutions by mesoporous organosilicas of MCM-41 type[J].Journal of Environmental Sciences,2021,99:59-71.

    9. [9]

      TRZECIAK K,KAZMIERSKI S,WIELGUS E,et al.DiSupLo-New extremely easy and efficient method for loading of active pharmaceutical ingredients into the pores of MCM-41 mesoporous silica particles[J].Microporous and Mesoporous Materials,2020,308:110506.

    10. [10]

      SACHSE A,WUTTKE C,DIAZ U,et al. Mesoporous Y zeolite through ionic liquid based surfactant templating[J]. Microporous and Mesoporous Materials,2015,217:81-86.

    11. [11]

      LIU S Y,MENG X J,XIAO F S.Hydrothermal synthesis of ordered mesoporous materials with high stability at high temperatures[J]. Acta Physico-Chimica Sinica,2010,26(7):1852-1859.

    12. [12]

      SOLTYS M,BALOUCH M,KASPAR O,et al. Evaluation of scale-up strategies for the batch synthesis of dense and hollow mesoporous silica microspheres[J].Chemical Engineering Journal,2018,334:1135-1147.

    13. [13]

      VAZQUEZ N I,GONZALEZ Z,FERRARI B,et al.Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future delivery applications[J]. Boletin De La Sociedad Espanola De Ceramica Y Vidrio,2017,56(3):139-145.

    14. [14]

      GIERNOTH R.Task-Specific ionic liquids [J].Angewandte Chemie-International Edition, 2010, 49(16): 2834-2839.

    15. [15]

      LI X Y,MA J,WANG J J.Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-oct-ylimidazolium bromide[J]. Ecotoxicology and Environmental Safety,2015,120:342-348.

    16. [16]

      MEKSI N,MOUSSA A.A review of progress in the ecological application of ionic liquids in textile processes[J]. Journal of Cleaner Production,2017,161:105-126.

    17. [17]

      HANAMERTANI A S,PILUS R M,IDRIS A K,et al.Ionic liquids as a potential additive for reducing surfactant adsorption onto crushed Berea sandstone[J].Journal of Petroleum Science and Engineering,2018,162:480-490.

    18. [18]

      DOBLER D,SCHMIDTS T,KLINGENHOFER I,et al.Ionic liquids as ingredients in topical drug delivery systems[J].International Journal of Pharmaceutics,2013,441(1/2):620-627.

    19. [19]

      LIU H,WANG M Y,HU H J,et al.High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO2 using ionic liquid as a template[J].Journal of Solid State Chemistry,2011,184(3):509-515.

    20. [20]

      HU J,GAO F,SHANG Y Z,et al.One-step synthesis of micro/mesoporous material templated by CTAB and imidazole ionic liquid in aqueous solution[J].Microporous and Mesoporous Materials, 2011,142(1):268-275.

    21. [21]

      ZUKAL A,SIKLOVA H,CEJKA J,et al.Preparation of MCM-41 silica using the cationic surfactant blend[J].Adsorption-Journal of the International Adsorption Society, 2007,13(3/4):247-256.

    22. [22]

      KUMAR M A,KRISHN N V,SELVAM P.Novel ionic liquid-templated ordered mesoporous aluminosilicates: Synthesis, characterization and catalytic properties[J]. Microporous and Mesoporous Materials, 2019,275:172-179.

    23. [23]

      PUTZ A M,LEN A,IANASI C,et al.Ultrasonic preparation of mesoporous silica using pyridinium ionic liquid[J]. Korean Journal of Chemical Engineering, 2016,33(3):749-754.

    24. [24]

      ZAHARUDIN N S,ISA E D M,AHMAD H,et al.Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application[J].Journal of Saudi Chemical Society, 2020,24(3):289-302.

    25. [25]

      WANG T W,KAPER H,ANTONIETTI M,et al.Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica[J]. Langmuir,2007,23(3):1489-1495.

    26. [26]

      ISA E D M,RAHMAN M B A,AHMAD H.Monodispersed mesoporous silica nanospheres based on pyridinium ionic liquids[J]. Journal of Porous Materials, 2018,25(5):1439-1446.

    27. [27]

      ISA E D M,MAHMUD I S,AHMAD H,et al.Dependence of mesoporous silica properties on its template[J]. Ceramics International, 2019,45(9):12149-12153.

    28. [28]

      惠蒙蒙,邹文苑,杨许召,等.离子液体表面活性剂的合成与应用(Ⅳ):离子液体表面活性剂的表面活性[J].日用化学工业,2017,47(4):186-191.

    29. [29]

      邹文苑,杨许召,徐清杰,等.离子液体表面活性剂的合成与应用(Ⅴ):离子液体表面活性剂的聚集热力学和状态[J].日用化学工业,2017,47(5):251-256.

    30. [30]

      KUMAR M A,KRISHN N V,SELVAM P.Novel ionic liquid-templated ordered mesoporous aluminosilicates: Synthesis, characterization and catalytic properties[J].Microporous and Mesoporous Materials,2019,275:172-179.

    31. [31]

      RAMELI N,JUMBRI K,WAHAB R A,et al.Synthesis and characterization of mesoporous silica nanoparticles using ionic liquids as a template[J].Journal of Physics Conference Series,2018,1123:68-76.

    32. [32]

      ZHAO S,HE M,ZHOU Y M,et al.Synthesis of micro/mesoporous silica material by dual-template method as a heterogeneous catalyst support for alkylation[J].Rsc Advances,2015,5(36):28124-28132.

    33. [33]

      ZHANG H Y,LIU S.Preparation of ordered mesoporous silica materials templated by ionic liquids in alkaline condition[J].Journal of Porous Materials,2019,26(1): 1-6.

    1. [1]

      陈昆黄福利吴承澄谢一飞李凯斌柳胜耀戚祖强唐伟 . 高发射率发热针对加热卷烟温度及气溶胶释放的影响. 轻工学报, 2024, 0(0): -.

    2. [2]

      陈昆黄福利吴承澄谢一飞李凯斌柳胜耀戚祖强唐伟 . 高发射率发热针对加热卷烟温度及气溶胶释放的影响. 轻工学报, 2024, 39(6): 108-115. doi: 10.12187/2024.06.013

    3. [3]

      吴靖娜林泽烨苏筱张任翔陈晓婷潘南 . 龙须菜渣纤维素/纳米纤维素及其水凝胶的制备和性能研究. 轻工学报, 2024, 39(6): 49-56. doi: 10.12187/2024.06.006

    4. [4]

      胡新楠朱成凯胡中泽纪执立金伟平郭城沈汪洋 . 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响. 轻工学报, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002

    5. [5]

      成晓宁张焯赵亚石启龙高瑞昌居向东 . 罗氏沼虾虾仁介电特性变化规律研究. 轻工学报, 2025, 40(3): 46-55. doi: 10.12187/2025.03.006

    6. [6]

      郭水欢袁思洁郭楠楠陈贤樊亚敏高晗詹丽娟 . 发光二极管调控芽苗菜品质的研究进展. 轻工学报, 2025, 40(1): 49-57. doi: 10.12187/2025.01.006

    7. [7]

      李翠翠贾笑莉张丽郭赛赛孙薇陆啟玉 . 面制品加工过程中小麦面筋蛋白巯基、二硫键变化的研究进展. 轻工学报, 2024, 39(6): 1-8,56. doi: 10.12187/2024.06.001

    8. [8]

      雷露许浩翔李婷周景瑞齐婧艾蓉罗文菊姜玲玲 . 黄花梨蜂蜜与其他蜜源蜂蜜的抗氧化特性研究. 轻工学报, 2025, 40(1): 32-40. doi: 10.12187/2025.01.004

    9. [9]

      雷月馨程张晨陈瑾贺禹丰肖香 . 不同大麦多酚的抗氧化及降脂能力差异研究. 轻工学报, 2025, 0(0): -.

    10. [10]

      雷月馨程张晨陈瑾贺禹丰肖香 . 不同大麦多酚的抗氧化及降脂能力差异研究. 轻工学报, 2025, 40(4): 30-40. doi: 10.12187/2025.04.004

    11. [11]

      楚文娟郭丽霞程东旭王红霞崔廷冯银龙王建民鲁平 . 基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法. 轻工学报, 2024, 39(6): 93-100. doi: 10.12187/2024.06.011

    12. [12]

      倪众楚鹏飞林颖刘玉欣 . 低温长时间热处理过程中氧化和加热对海参体壁胶原纤维结构的影响. 轻工学报, 2025, 40(1): 21-31,57. doi: 10.12187/2025.01.003

    13. [13]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

    14. [14]

      张馨月闫倩楠杨泽豪于淼马挺军 . 虾青素鸡蛋的营养活性及风味研究. 轻工学报, 2025, 40(1): 41-48. doi: 10.12187/2025.01.005

    15. [15]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用研究现状与展望. 轻工学报, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009

    16. [16]

      蒋纬胡颖朱振元 . 阳荷多糖提取工艺优化及其生物活性研究. 轻工学报, 2025, 40(4): 10-19. doi: 10.12187/2025.04.002

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1997
  • 引证文献数: 0
文章相关
  • 收稿日期:  2021-04-17
  • 修回日期:  2021-06-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
杨许召, 白亚榕, 张晨龙, 等. 哌啶类离子液体表面活性剂为模板制备介孔二氧化硅[J]. 轻工学报, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015
引用本文: 杨许召, 白亚榕, 张晨龙, 等. 哌啶类离子液体表面活性剂为模板制备介孔二氧化硅[J]. 轻工学报, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015
YANG Xuzhao, BAI Yarong, ZHANG Chenlong, et al. Preparation of mesoporous silica with piperidinium-based ionic liquid surfactant as templates[J]. Journal of Light Industry, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015
Citation: YANG Xuzhao, BAI Yarong, ZHANG Chenlong, et al. Preparation of mesoporous silica with piperidinium-based ionic liquid surfactant as templates[J]. Journal of Light Industry, 2022, 37(2): 110-118. doi: 10.12187/2022.02.015

哌啶类离子液体表面活性剂为模板制备介孔二氧化硅

    作者简介:杨许召(1978—),男,河南省汝州市人,郑州轻工业大学副教授,主要研究方向为精细化工。E-mail:yangxz@zzuli.edu.cn
  • 1. 郑州市精细化学品重点实验室, 河南 郑州 450001;
  • 2. 郑州轻工业大学 材料与化学工程学院, 河南 郑州 450001
基金项目:  郑州市科技攻关项目(141PQYJS555)郑州轻工业大学博士研究基金项目(2020BSJJ018)河南省科技攻关项目(162102210056)

摘要: 以哌啶类离子液体表面活性剂N-十六烷基-N-甲基哌啶溴盐([C16MPip]Br)为模板,正硅酸乙酯(TEOS)为硅源,在碱性环境下,通过水热合成法制备出形貌可控的介孔二氧化硅。研究了[C16MPip]Br/TEOS和NH4OH/TEOS物质的量之比、水合温度、煅烧温度等反应条件对介孔二氧化硅结构的影响。采用小角X射线衍射(XRD)、傅里叶红外(FTIR)、N2吸附-脱附和透射电子显微镜(TEM)对所制备的介孔二氧化硅样品进行了结构表征。结果表明,介孔二氧化硅的结构受反应条件的影响,在[C16MPip]Br/TEOS和NH4OH/TEOS物质的量之比分别为0.32和13,水合温度为25℃,煅烧温度为550℃时,[C16MPip]Br作为模板可以制备出规则有序的介孔二氧化硅MCM-41,其比表面积约为1000 m2/g,孔径约为2.5 nm。

English Abstract

参考文献 (33) 相关文章 (16)

目录

/

返回文章