[1] 镇斌,董杨.均质简支梁简化为单自由度系统条件研究[J].力学季刊,2020, 41(4):61.
[2] 刘贵杰,王新宝.基于单自由度强迫振动的直线波浪发电系统研究[J].机电工程,2017,14(7):782.
[3] 党珍珍,李遇春,余燕清.连续梁在周期荷载下的动力稳定性简化分析方法[J].力学季刊,2019, 40(3):74.
[4] RAO M D.Recent applications of visoelastic damping for noise control in automobiles and commercial airplanesk[J].Journal of Sound and Vibration,2003,262:457.
[5] 张衬英,杨小俊,葛东坡.振动特性参数对单自由度系统振动响应的影响[J].包装工程,2020(19):75.
[6] ARMSTRONG-HÉLOUVRY B, DUPONT P, DE WIT C C.A survey of models, analysis tools and compensation methods for the control of machines with friction[J].Automatic,1994,30(7):1083.
[7] 李得洋,丁旺才,卫晓娟,等.单自由度含干摩擦碰振系统相邻周期运动转迁规律分析[J].振动与冲击, 2020,39(22):57.
[8] 丁千,翟红梅.机械系统摩擦动力学研究进展[J].力学进展,2013,3(1):112.
[9] WANG J,SHEN Y J,YANG S P,et al.Dynamic response of a piecewise linear single-degree-of-freedom oscillator with fractional-order derivative[J].Journal of Low Frequency Noise Vibration and Active Control, 2021,40(1):72.
[10] 贾启芬,刘习军.理论力学[M].北京:机械工业出版社,2012:342-364.
[11] HIBBELER R C.工程力学(动力学)[M].北京:高等教育出版社,2004:605-639.
[12] 杨义勇,金德闻.机械系统动力学[M].北京:清华大学出版社,2009:134-168.
[13] 张梅军,曹勤.工程机械动力学[M].北京:国防工业出版社,2012:6-30.
[14] CHEN H B,DUAN S,TANG Y L,et al.Global dynamics of a mechanical system with dry friction[J].Journal of Differential Equations,2018,265:5490.
[15] 田红亮,陈谦.单自由度系统[J].三峡大学学报(自然科学版),2019,41(5):103.
[16] WU Z Y,LIU H Z,LIU L L,et al.Identification of nonlinear viscous damping and Coulomb friction from the free response data[J].Journal of Sound and Vibration,2007,304(1/2):407.
[17] 魏井福,张小龙.库仑摩擦对自由振动特性的影响分析[J].机械工程师,2010,42(8):52.
[18] 艾金婷,富立,郑玉.库仑摩擦对机械振动的影响[J].长春理工大学学报,2014,27(2):49.
[19] FEENY B F, LIANG J W.A decrement method for the simultaneous estimation of Coulomb and internal friction[J].Journal of Sound and Vibration,1996,195:149.
[20] LEE S K.Closed-form solutions to free vibration response of single degree of freedom systems with Coulomb friction[J].Journal of the Computational Structural Engineering Institute of Korea, 2020,33(1):9.
[21] 张艳龙,王丽,唐斌斌.含改进LuGre动摩擦的非光滑振动系统的动力学分析[J].振动与冲击, 2018,37(6):212.