含初始条件的基于黏滞阻尼的单自由度振动响应综合研究
Comprehensive research of single-degree-of-freedom vibration response based on viscous damping with initial conditions
-
摘要: 针对目前关于单自由度振动研究存在的不足,给出包含初始条件的基于黏滞阻尼的自由振动和简谐激励振动响应计算式,绘制了相应的幅频曲线图和相频曲线图;展示了小阻尼共振曲线的过渡过程,指出了无阻尼振动响应的拍振现象;推导出了库仑摩擦力对位移差别的影响式.研究结果表明:对于无黏滞阻尼系统的共振响应,小库仑摩擦力抑制不住其增长趋势;当库仑摩擦力接近于激励力幅值时,才能使共振响应的幅值不超过稳态值.Abstract: In view of the some shortcomings of research on single-degree-of-freedom vibration at present, the response equations of the free vibration and harmonic excitation based on viscous damping with initial conditions were listed, the amplitude frequency and phase frequency curves were plotted. The transition process of the small damped resonance curve was shown, the beat vibration phenomenon of undamped vibration response was presented. The Influence formulas of Coulomb friction on the difference of displacement were derived,the influence regularity of Coulomb friction on the vibration response was studied. The results showed that the small Coulomb friction could not restrain the growth trend for resonant response of non-viscous damping system. Only when the Coulomb friction was close to the excitation force amplitude,the resonance response amplitude could be restrained from exceeding the steady state value.
-
-
[1]
镇斌,董杨.均质简支梁简化为单自由度系统条件研究[J].力学季刊,2020, 41(4):61.
-
[2]
刘贵杰,王新宝.基于单自由度强迫振动的直线波浪发电系统研究[J].机电工程,2017,14(7):782.
-
[3]
党珍珍,李遇春,余燕清.连续梁在周期荷载下的动力稳定性简化分析方法[J].力学季刊,2019, 40(3):74.
-
[4]
RAO M D.Recent applications of visoelastic damping for noise control in automobiles and commercial airplanesk[J].Journal of Sound and Vibration,2003,262:457.
-
[5]
张衬英,杨小俊,葛东坡.振动特性参数对单自由度系统振动响应的影响[J].包装工程,2020(19):75.
-
[6]
ARMSTRONG-HÉLOUVRY B, DUPONT P, DE WIT C C.A survey of models, analysis tools and compensation methods for the control of machines with friction[J].Automatic,1994,30(7):1083.
-
[7]
李得洋,丁旺才,卫晓娟,等.单自由度含干摩擦碰振系统相邻周期运动转迁规律分析[J].振动与冲击, 2020,39(22):57.
-
[8]
丁千,翟红梅.机械系统摩擦动力学研究进展[J].力学进展,2013,3(1):112.
-
[9]
WANG J,SHEN Y J,YANG S P,et al.Dynamic response of a piecewise linear single-degree-of-freedom oscillator with fractional-order derivative[J].Journal of Low Frequency Noise Vibration and Active Control, 2021,40(1):72.
-
[10]
贾启芬,刘习军.理论力学[M].北京:机械工业出版社,2012:342-364.
-
[11]
HIBBELER R C.工程力学(动力学)[M].北京:高等教育出版社,2004:605-639.
-
[12]
杨义勇,金德闻.机械系统动力学[M].北京:清华大学出版社,2009:134-168.
-
[13]
张梅军,曹勤.工程机械动力学[M].北京:国防工业出版社,2012:6-30.
-
[14]
CHEN H B,DUAN S,TANG Y L,et al.Global dynamics of a mechanical system with dry friction[J].Journal of Differential Equations,2018,265:5490.
-
[15]
田红亮,陈谦.单自由度系统[J].三峡大学学报(自然科学版),2019,41(5):103.
-
[16]
WU Z Y,LIU H Z,LIU L L,et al.Identification of nonlinear viscous damping and Coulomb friction from the free response data[J].Journal of Sound and Vibration,2007,304(1/2):407.
-
[17]
魏井福,张小龙.库仑摩擦对自由振动特性的影响分析[J].机械工程师,2010,42(8):52.
-
[18]
艾金婷,富立,郑玉.库仑摩擦对机械振动的影响[J].长春理工大学学报,2014,27(2):49.
-
[19]
FEENY B F, LIANG J W.A decrement method for the simultaneous estimation of Coulomb and internal friction[J].Journal of Sound and Vibration,1996,195:149.
-
[20]
LEE S K.Closed-form solutions to free vibration response of single degree of freedom systems with Coulomb friction[J].Journal of the Computational Structural Engineering Institute of Korea, 2020,33(1):9.
-
[21]
张艳龙,王丽,唐斌斌.含改进LuGre动摩擦的非光滑振动系统的动力学分析[J].振动与冲击, 2018,37(6):212.
-
[1]
-

计量
- PDF下载量: 18
- 文章访问数: 2252
- 引证文献数: 0