不同大麦多酚的抗氧化及降脂能力差异研究
Study on the differences in antioxidant and lipid-lowering activities of different barley polyphenols
-
摘要: 分别采用微生物(植物乳植杆菌dy-1)发酵和酶法(硫酸酯酶)水解制备大麦多酚,解析其酚类化合物组分,并从抗氧化及降脂能力两方面研究不同酚类化合物组分对大麦多酚生物活性的影响。结果表明:酶解大麦多酚和发酵大麦多酚的总酚含量分别为78.35 μg GAE/mL和146.56 μg GAE/mL。在这两种大麦多酚中,香草醛、苯甲酸、2,4-二羟基苯甲酸、表儿茶素和水杨酸等组分的绝对含量存在显著差异。在总酚含量相同的条件下,香草醛、绿原酸和没食子酸是酶解大麦多酚的特征组分,而苯甲酸、3,4-二甲氧基苯甲酸和表儿茶素是发酵大麦多酚的特征组分。相较于酶解大麦多酚,发酵大麦多酚的DPPH和ABTS+自由基清除率分别提高了36.8%和13.3%。在20 μg GAE/mL总酚含量下,发酵大麦多酚和酶解大麦多酚均能有效减少秀丽隐杆线虫体内的脂肪累积,并使甘油三酯(TG)含量分别降低23.3%和27.9%。此外,两种大麦多酚均能促进秀丽隐杆线虫的运动行为,加速其脂质消耗,并通过抑制SBP-1信号通路的异常激活发挥降脂作用,其中酶解大麦多酚对胰岛素/胰岛素样生长因子信号通路的抑制更加显著(P<0.05)。因此,在总酚含量相同的条件下,大麦多酚的组分差异显著影响其抗氧化和降脂能力。Abstract: Barley polyphenols were prepared by fermentation (using Lactiplantibacillus plantarum dy-1) and enzymatic hydrolysis (with sulfatase), respectively. The phenolic profiles of fermented barley polyphenols (FBP) and enzymatic hydrolysis barley polyphenols (EBP) were analyzed. The antioxidant capacities and lipid-lowering effects of FBP and EBP were further investigated. The results showed that the total phenolic contents of EBP and FBP were 78.35 μg GAE/mL and 146.56 μg GAE/mL, respectively. The absolute concentrations of vanillin, benzoic acid, 2,4-dihydroxybenzoic acid, epicatechin, and salicylic acid differed significantly between the two barley polyphenol preparations. Under equivalent total phenol content conditions, vanillin, chlorogenic acid, and gallic acid were characteristic components of EBP, whereas benzoic acid, 3,4-dimethoxybenzoic acid, and epicatechin were characteristic components of FBP. Compared to EBP, the DPPH and ABTS+ scavenging capacities of FBP were enhanced by 36.8% and 13.3%, respectively. At a total phenolic content of 20 μg GAE/mL, both FBP and EBP effectively reduced intravital lipid droplet, accumulation and decreased triglyceride (TG, 23.3% and 27.9% reduction, respectively) levels in Caenorhabditis elegans. Furthermore, both FBP and EBP enhanced locomotor activity in C.elegans, thereby accelerating lipid catabolism, and exerted lipid-lowering effects by suppressing the aberrant activation of the SBP-1 signaling pathway. Notably, EBP showed a more pronounced inhibitory effect on the insulin/insulin-like growth factor signaling pathway compared to FBP (P<0.05). In conclusion, under equivalent total phenolic content conditions, the compositional differences of barley polyphenols significantly modulated their antioxidant capacities and lipid-lowering activities.
-
-
[1]
BOHL M,GREGERSEN S,ZHONG Y Y,et al.Beneficial glycaemic effects of high-amylose barley bread compared to wheat bread in type 2 diabetes[J].European Journal of Clinical Nutrition,2024,78(3):243-250.
-
[2]
PAN R R,XU T,BAI J,et al.Effect of Lactobacillus plantarum fermented barley on plasma glycolipids and insulin sensitivity in subjects with metabolic syndrome[J].Journal of Food Biochemistry,2020,44(11):e13471.
-
[3]
邓娜.青稞全谷物降血糖活性及作用机制研究[D].广州:华南理工大学,2021.
-
[4]
GANGOPADHYAY N,RAI D K,BRUNTON N P,et al.Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain[J].Food Chemistry,2016,210:212-220.
-
[5]
JIN H M,DANG B,ZHANG W G,et al.Polyphenol and anthocyanin composition and activity of highland barley with different colors[J].Molecules,2022,27(11):3411.
-
[6]
DRYER-BEERS E R,GRIFFIN J,MATTHEWS P M,et al.Higher dietary polyphenol intake is associated with lower blood inflammatory markers[J].The Journal of Nutrition,2024,154(8):2470-2480.
-
[7]
汪雪莲,冯慧祥,薛世华,等.绿茶茶末多酚的提取、鉴定及其生物活性研究[J].轻工学报,2022,37(6):58-67.
-
[8]
牛玉清,赵岩,于鑫淼,等.新疆管花肉苁蓉生物活性物质及产地差异分析[J].轻工学报,2022,37(6):25-33.
-
[9]
刘颖.菌酶协同发酵对苦荞多酚物质的释放及其应用研究[D].武汉:武汉轻工大学,2023.
-
[10]
XIAO X,BAI J,ZHANG J Y,et al.Inhibitory effect of fermented selected barley extracts with Lactobacillus plantarum dy-1 on the proliferation of human HT-29 Cells[J].Journal of Food Biochemistry,2019,43(11):e12989.
-
[11]
程张晨.植物乳植杆菌dy-1中硫酸酯酶对大麦结合态酚的释放作用研究[D].镇江:江苏大学,2024.
-
[12]
ZHANG X W,ZHANG M W,DONG L H,et al.Phytochemical profile,bioactivity,and prebiotic potential of bound phenolics released from rice bran dietary fiber during in vitro gastrointestinal digestion and colonic fermentation[J].Journal of Agricultural and Food Chemistry,2019,67(46):12796-12805.
-
[13]
ZHANG J Y,XIAO X,DONG Y,et al.Fermented barley extracts with Lactobacillus plantarum dy-1 changes serum metabolomic profiles in rats with high-fat diet-induced obesity[J].International Journal of Food Sciences and Nutrition,2019,70(3):303-310.
-
[14]
姚芳,肖香,董英.大麦乳酸菌发酵液粉中多酚的提取及其抗氧化性研究[J].食品工业科技,2017,38(10):211-216
,235. -
[15]
宋丽丽,霍姗浩,胡冉冉,等.复合乳酸菌固态发酵对脱脂米糠理化性质、生物活性和功能特性的影响[J].轻工学报,2024,39(3):21-28.
-
[16]
高超.款冬叶黄酮的抗氧化活性研究[J].轻工学报,2020,35(2):17-23.
-
[17]
赵甜甜,张国治,王赵改,等.两种市售香椿茶主要活性成分、抗氧化活性及挥发性成分的对比分析[J].轻工学报,2023,38(3):35-45.
-
[18]
谭翠.发酵大麦β-葡聚糖的抗氧化作用研究[D].镇江:江苏大学,2021.
-
[19]
YUE Y R,LI S D,SHEN P Y,et al.Caenorhabditis elegans as a model for obesity research[J].Current Research in Food Science,2021,4:692-697.
-
[20]
李鑫萍,李凯玲,段治.副干酪乳杆菌VHProbi E12发酵藿香提取液的抗UVB性能研究[J].南昌航空大学学报(自然科学版),2024,38(2):69-75.
-
[21]
刘甜甜,吴晓娟,吴伟.多酚-膳食纤维相互作用及其影响多酚生物利用率研究进展[J].中国粮油学报,2022,37(7):179-187.
-
[22]
LI J Y,BAI J,YUAN J,et al.Heterologous expression and characterization of an endoglucanase from Lactobacillus plantarum dy-1[J].Food & Function,2023,14(8):3760-3768.
-
[23]
CHENG Z C,WU B Q,BAI J,et al.Heterologous expression and enzymatic characteristics of sulfatase from Lactobacillus plantarum dy-1[J].Food & Function,2024,15(10):5439-5449.
-
[24]
吕京京,李璐,张娜.植物性食物中结合多酚的释放及功能活性的研究进展[J].食品工业科技,2025,46(4):404-413.
-
[25]
谢宁轩,张文刚,党斌,等.冠突散囊菌发酵对青稞多酚组成及其体外抗氧化及糖脂代谢酶抑制活性的影响[J].食品与发酵工业,2024,50(23):87-94.
-
[26]
唐双庆,鲁慧琪,李秀丽,等.枯草芽孢杆菌发酵对豆类中酚类物质及抗氧化活性的影响[J].中国食品学报,2024,24(1):291-300.
-
[27]
HUANG H R,CHEN J J,AO T X,et al.Exploration of the role of bound polyphenols on tea residues dietary fiber improving diabetic hepatorenal injury and metabolic disorders[J].Food Research International,2022,162:112062.
-
[28]
ARSHAD M,CHAUDHARY A R,MUMTAZ M W,et al.Polyphenol fingerprinting and hypoglycemic attributes of optimized Cycas circinalis leaf extracts[J].Journal of the Science of Food and Agriculture,2021,101(4):1530-1537.
-
[29]
许欢怡,赖美英,刘斌,等.猴头菇多糖提取及抗氧化和降脂活性研究[J].食品科技,2023,48(12):205-213.
-
[30]
郭鑫.脂肪酸组成对脂质伴随物在秀丽线虫体内抗氧化和降脂功能影响的研究[D].无锡:江南大学,2020.
-
[31]
SUN Q C,YUE Y R,SHEN P Y,et al.Cranberry product decreases fat accumulation in Caenorhabditis elegans[J].Journal of Medicinal Food,2016,19(4):427-433.
-
[32]
WATTS J L,RISTOW M.Lipid and carbohydrate metabolism in Caenorhabditis elegans[J].Genetics,2017,207(2):413-446.
-
[33]
BAI J,LI J,PAN R R,et al.Polysaccharides from Volvariella volvacea inhibit fat accumulation in C.elegans dependent on the aak-2/nhr-49-mediated pathway[J].Journal of Food Biochemistry,2021,45(11):e13912.
-
[34]
YANG F J,VOUGHT B W,SATTERLEE J S,et al.An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis[J].Nature,2006,442(7103):700-704.
-
[35]
ZHANG P C,JUDY M,LEE S J,et al.Direct and indirect gene regulation by a life-extending FOXO protein in C.elegans:Roles for GATA factors and lipid gene regulators[J].Cell Metabolism,2013,17(1):85-100.
-
[1]
-

计量
- PDF下载量: 2
- 文章访问数: 216
- 引证文献数: 0