JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

一株高耐受粗甘油枯草芽孢杆菌的分子机制研究

贾晨阳 张帆 刘兰茜 王光路 杨雪鹏

贾晨阳, 张帆, 刘兰茜, 等. 一株高耐受粗甘油枯草芽孢杆菌的分子机制研究[J]. 轻工学报, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006
引用本文: 贾晨阳, 张帆, 刘兰茜, 等. 一株高耐受粗甘油枯草芽孢杆菌的分子机制研究[J]. 轻工学报, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006
JIA Chenyang, ZHANG Fan, LIU Lanxi, et al. Investigation into the molecular mechanism of a Bacillus subtilis strain exhibiting high tolerance to crude glycerol[J]. Journal of Light Industry, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006
Citation: JIA Chenyang, ZHANG Fan, LIU Lanxi, et al. Investigation into the molecular mechanism of a Bacillus subtilis strain exhibiting high tolerance to crude glycerol[J]. Journal of Light Industry, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006

一株高耐受粗甘油枯草芽孢杆菌的分子机制研究

    作者简介: 贾晨阳(2000—),男,山东省滨州市人,郑州轻工业大学硕士研究生,主要研究方向为生物技术与工程。E-mail:1765636995@qq.com;
    通讯作者: 杨雪鹏,yangxuepeng@zzuli.edu.cn
  • 基金项目: 河南省科技攻关重点研发与推广专项项目(232102311136)
    河南省自然科学基金重点项目(242300421202)

  • 中图分类号: TS201.3

Investigation into the molecular mechanism of a Bacillus subtilis strain exhibiting high tolerance to crude glycerol

    Corresponding author: YANG Xuepeng, yangxuepeng@zzuli.edu.cn
  • Received Date: 2025-01-02
    Accepted Date: 2025-05-12

    CLC number: TS201.3

  • 摘要: 选取高耐受粗甘油的枯草芽孢杆菌为研究对象,利用全基因组和转录组测序技术解析其对高质量浓度粗甘油的耐受机制。结果表明:进化菌株中检测到23个突变基因,涉及ABC转运系统、烟酸与烟酰胺代谢、群体感应、芽孢生成等关键途径。相比出发菌株,进化菌株在甘油(酯)代谢、三羧酸循环、嘌呤代谢、ABC转运系统、能量代谢等途径中的基因表达显著上调,脂肪酸和生物素合成代谢也明显增强;部分丧失芽孢生成能力,稳定中期和后期的芽孢生成率分别下降了38.0%和52.3%;细胞膜新增6种成分,脂肪酸种类和质量浓度均显著增加,磷脂双分子层稳定性增强,这是其高粗甘油耐受性和快速生长的关键原因。
    1. [1]

      姜莉莉,朱宝伟,李昌丽,等.微生物转化粗甘油制备高附加值产品的研究进展[J].生物质化学工程,2021,55(5):60-66.

    2. [2]

      SAHOO S T,SINKU A,DAW P.A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation[J].RSC Advances,2024,14(50):37082-37086.

    3. [3]

      GÓRSKA K,GARNCAREK Z.High-yield production of dihydroxyacetone from crude glycerol in fed-batch cultures of Gluconobacter oxydans[J].Molecules,2024,29(12):2932.

    4. [4]

      WANG H,LI H P,LEE C K,et al.Lipase-catalyzed solvent-free synthesis of monoglycerides from biodiesel-derived crude glycerol:Optimized using response surface methodology[J].Heliyon,2024,10(10):e31292.

    5. [5]

      KEOGH J,INRIRAI P,ARTIOLI N,et al.Nanostructured solid/liquid acid catalysts for glycerol esterification:The key to convert liability into assets[J].Nanomaterials,2024,14(7):615.

    6. [6]

      MOKLIS M H,CHENG S,CROSS J S.Current and future trends for crude glycerol upgrading to high value-added products[J].Sustainability,2023,15(4):2979.

    7. [7]

      HUR D H,LEE J,PARK S J,et al.Engineering of Pseudomonas putida to produce medium-chain-length polyhydroxyalkanoate from crude glycerol[J].International Journal of Biological Macromolecules,2024,281:136411.

    8. [8]

      JAIBOON K,CHOUWATAT P,NAPATHORN S C.Valorization of biodiesel-derived crude glycerol for simultaneous biosynthesis of biodegradable polyhydroxybutyrate and exopolysaccharide by the newly isolated Burkholderia sp.SCN-KJ[J].International Journal of Biological Macromolecules,2024,281:136556.

    9. [9]

      BIANCHI G,PESSINA A,AMI D,et al.Sustainable production of a biotechnologically relevant β-galactosidase in Escherichia coli cells using crude glycerol and cheese whey permeate[J].Bioresource Technology,2024,406:1310630.

    10. [10]

      DIKSHIT P K,KHARMAWLONG G J,MOHOLKAR V S.Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans[J].Bioresource Technology,2018,256:302-311.

    11. [11]

      KAUR J,SARMA A K,JHA M K,et al.Valorisation of crude glycerol to value-added products:Perspectives of process technology,economics and environmental issues[J].Biotechnology Reports,2020,27:e00487.

    12. [12]

      ASOPA R P,BHOI R,SAHARAN V K.Valorization of glycerol into value-added products:A comprehensive review on biochemical route[J].Bioresource Technology Reports,2022,20:101290.

    13. [13]

      JO M H,JU J H,HEO S Y,et al.High production of enantiopure (R,R)-2,3-butanediol from crude glycerol by Klebsiella pneumoniae with an engineered oxidative pathway and a two-stage agitation strategy[J].Microbial Cell Factories,2024,23(1):205.

    14. [14]

      DISHISHA T,JAIN M,HATTI-KAUL R.High cell density sequential batch fermentation for enhanced propionic acid production from glucose and glycerol/glucose mixture using Acidipropionibacterium acidipropionici[J].Microbial Cell Factories,2024,23(1):91.

    15. [15]

      WANG X L,SUN Y Q,PAN D T,et al.Kinetics-based development of two-stage continuous fermentation of 1,3-propanediol from crude glycerol by Clostridium butyricum[J].Biotechnology for Biofuels and Bioproducts,2024,17(1):38.

    16. [16]

      李建,孔婧,李圣龙,等.适应性实验室进化技术在微生物育种中的应用进展[J].生物工程学报,2021,37(1):130-41.

    17. [17]

      张瑷珲.用于1,3-丙二醇生产的丁酸梭菌发酵代谢轮廓分析和适应性进化研究[D].厦门:厦门大学,2019.

    18. [18]

      王世珍,严正平,邱隆辉,等.发酵粗甘油产乳酸的戊糖乳杆菌代谢进化[J].化工学报,2015,66(8):3195-3203.

    19. [19]

      ZHANG C J,SHARMA S,MA C W,et al.Strain evolution and novel downstream processing with integrated catalysis enable highly efficient coproduction of 1,3-propanediol and organic acid esters from crude glycerol[J].Biotechnology and Bioengineering,2022,119(6):1450-1466.

    20. [20]

      孙大庆,齐贺,邸子清,等.嗜果聚糖Lactiplantibacillus plantarum 19M03的筛选及全基因组测序分析[J].食品科学,2024,45(23):113-122.

    21. [21]

      KAWAI K,KANESAKI Y,YOSHIKAWA H,et al.Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis[J].Journal of Bioscience and Bioengineering,2019,128(2):162-169.

    22. [22]

      JU J H,HEO S Y,CHOI S W,et al.Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83[J].Bioresource Technology,2021,337:125361.

    23. [23]

      ZHOU D Y,HU F X,LIN J Z,et al.Genome and transcriptome analysis of Bacillus velezensis BS-37,an efficient surfactin producer from glycerol,in response to D-/L-leucine[J].MicrobiologyOpen,2019,8(8):e00794.

    24. [24]

      黄申,周利峰,吕乔,等.嗜麦芽窄食单胞菌的培养基优化及其在烟叶发酵中的初步应用研究[J].轻工学报,2021,36(3):36-44.

    25. [25]

      赵健淞,付若晗,王跃麟.等.不动杆菌PSB-K解磷促生能力研究及全基因组测序分析[J].微生物学通报,2025,52(1):199-218.

    26. [26]

      WANG G L,SHI T,CHEN T,et al.Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis[J].Metabolic Engineering,2018,48:138-149.

    27. [27]

      黄申,闫茗熠,陈梦月,等.基于转录组测序和RT-qPCR技术的烟草糖酯合成基因挖掘[J].轻工学报,2023,38(6):78-84
      ,117.

    28. [28]

      LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J].Methods,2001,25(4):402-408.

    29. [29]

      张丽华,刘世豪,唐培鑫,等.杜仲叶多糖对植物乳杆菌CICC 20022胆盐耐受性的影响[J].轻工学报,2024,39(3):1-8.

    30. [30]

      张爱静,李琳琼,王鹏杰,等.热胁迫对大肠杆菌细胞膜和膜蛋白的影响[J].中国农业科学,2020,53(5):1046-1057.

    31. [31]

      PADDER S A,PRASAD R,SHAH A H.Quorum sensing:A less known mode of communication among fungi[J].Microbiological Research,2018,210:51-58.

    32. [32]

      LIN Z F,XIAO Y T,ZHANG L,et al.Biochemical and molecular characterization of a novel glycerol dehydratase from Klebsiella pneumoniae 2e with high tolerance against crude glycerol impurities[J].Biotechnology for Biofuels and Bioproducts,2023,16(1):175.

    33. [33]

      KIM B,OH S J,HWANG J H,et al.Polyhydroxybutyrate production from crude glycerol using a highly robust bacterial strain Halomonas sp.YLGW01[J].International Journal of Biological Macromolecules,2023,236:123997.

    34. [34]

      WADITEE-SIRISATTHA R,KAGEYAMA H.Novel NhaC Na+/H+antiporter in cyanobacteria contributes to key molecular processes for salt tolerance[J].Plant Molecular Biology,2024,114(6):111.

    35. [35]

      MONTES-BRAVO N,ROMERO-RODRÍGUEZ A,GARCÍA-YUNGE J,et al.Role of the spore coat proteins cotA and cotB,and the spore surface protein CDIF630_02480,on the surface distribution of exosporium proteins in Clostridioides difficile 630 Spores[J].Microorganisms,2022,10(10):1918.

    36. [36]

      SMITA N,SASIKALA C,RAMANA C.New insights into peroxide toxicology:Sporulenes help Bacillus subtilis endospores from hydrogen peroxide[J].Journal of Applied Microbiology,2023,134(11):lxad238.

    37. [37]

      李雯静.芽孢杆菌SWB16的yisP基因克隆及下游环化酶基因sqhC缺失突变菌株的构建[D].重庆:西南大学,2013.

    38. [38]

      王光路,张帆,周忆菲,等.枯草芽孢杆菌甘油激酶编码基因定点突变提升甘油利用水平的研究[J].轻工学报,2020,35(6):1-8.

    39. [39]

      GONZÁLEZ-VILLANUEVA M,GALAIYA H,STANILAND P,et al.Adaptive laboratory evolution of Cupriavidus necator H16 for carbon co-utilization with glycerol[J].International Journal of Molecular Sciences,2019,20(22):5737.

    40. [40]

      曲俊泽,陈天华,姚明东,等.ABC转运蛋白及其在合成生物学中的应用[J].生物工程学报,2020,36(9):1754-1766.

    41. [41]

      OGURA M,TSUKAHARA K,HAYASHI K,et al.The Bacillus subtilis NatK-NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion[J].Microbiology,2007,153:667-675.

    42. [42]

      SAMUL D,LEJA K,GRAJEK W.Impurities of crude glycerol and their effect on metabolite production[J].Annals of Microbiology,2014,64(3):891-898.

    43. [43]

      蒋欢,马江山,曾柏全,等.粗甘油发酵生产1,3-丙二醇的研究进展[J].生物技术通报,2022,38(10):45-53.

    44. [44]

      KUMAR L R,YELLAPU S K,TYAGI R D,et al.A review on variation in crude glycerol composition,bio-valorization of crude and purified glycerol as carbon source for lipid production[J].Bioresource Technology,2019,293:122155.

    45. [45]

      王永成,陈涛,石婷,等.嘌呤核苷及其衍生物的代谢工程[J].中国生物工程杂志,2015,35(5):87-95.

    46. [46]

      HUANG D,WANG R,DU W J,et al.Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol[J].Bioresource Technology,2015,196:263-272.

    47. [47]

      ERNST R,EJSING S C,ANTONNY B.Homeoviscous adaptation and the regulation of membrane lipids[J].Journal of Molecular Biology,2016,428(24):4776-4791.

    48. [48]

      郑昀昀,陈茂娇,王敏,等.甲苯胁迫下有机溶剂耐受菌Anoxybacillus flavithermus ssp.yunnanesis E13T膜脂肪酸的变化[J].微生物学报,2015,55(6):719-724.

    49. [49]

      成永新.基于细胞膜脂组成分析的简单节杆菌乙醇耐受机制研究[D].天津:天津科技大学,2013.

    50. [50]

      SMITA N,ANUSHA R,INDU B,et al.In silico analysis of sporulene biosynthesis pathway genes in the members of the class Bacilli[J].Archives of Microbiology,2023,205(6):233.

    51. [51]

      张东春,张雅娟,孙颖,等.细菌芽孢的形成、萌发及控制手段研究进展[J].食品工业科技,2023,44(15):463-473.

    52. [52]

      UPDEGROVE T B,DELERUE T,ANANTHARAMAN V,et al.Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity[J].Science Advances,2024,10(42):eadq0791.

    1. [1]

      黄怡蔡文超余培荣陈炜单春会郭壮王玉荣 . 基于高通量测序和纯培养联用技术的药曲微生物多样性解析. 轻工学报, 2025, 0(0): -.

    2. [2]

      黄怡蔡文超余培荣陈炜单春会郭壮王玉荣 . 基于高通量测序和纯培养联用技术的药曲微生物多样性解析. 轻工学报, 2025, 40(5): 29-36. doi: 10.12187/2025.05.004

    3. [3]

      刘洪剑周乐群李贵忠彭漫江王雪锋张光海李枝桦刘涛 . 不同等级发酵后云南茄芯烟叶代谢组差异分析. 轻工学报, 2025, 40(4): 86-95. doi: 10.12187/2025.04.010

    4. [4]

      李欣蔚高香兰邓微张宗芮周钢霞 . 基于高通量测序的实仓不同点位稻谷理化性质及真菌群落结构差异比较. 轻工学报, 2025, 40(3): 1-9. doi: 10.12187/2025.03.001

    5. [5]

      齐汉如欧阳少丰李玉杨雪鹏赵建国 . 果胶酶粗酶液与漆酶粗酶液复配酶解膨胀梗丝的工艺优化. 轻工学报, 2025, 40(4): 96-107. doi: 10.12187/2025.04.011

    6. [6]

      石振兴柴浩浩仵华君朱莹莹么杨 . 内部结构设计对3D打印全麦曲奇饼干品质的影响. 轻工学报, 2024, 39(6): 9-17. doi: 10.12187/2024.06.002

    7. [7]

      许克静刘语煊张展吕晶晶梁淼李瑞丽张峻松陈小龙 . 辊压法全烟梗再造烟叶的制备工艺优化及结构与性能分析. 轻工学报, 2025, 40(1): 64-74. doi: 10.12187/2025.01.008

    8. [8]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    9. [9]

      张丽华刘世豪石勇李顺峰方萱钰陈云莉纵伟 . 超声波诱导植物乳杆菌对发酵红枣汁品质的影响. 轻工学报, 2025, 0(0): -.

    10. [10]

      张丽华刘世豪石勇李顺峰方萱钰陈云莉纵伟 . 超声波诱导植物乳杆菌对发酵红枣汁品质的影响. 轻工学报, 2025, 40(5): 1-10. doi: 10.12187/2025.05.001

    11. [11]

      胡仙妹于美逍杨雪鹏张展尹献忠 . 木醋杆菌和酿酒酵母混菌发酵对烟用细菌纤维素品质的影响. 轻工学报, 2024, 39(6): 84-92. doi: 10.12187/2024.06.010

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  202
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
贾晨阳, 张帆, 刘兰茜, 等. 一株高耐受粗甘油枯草芽孢杆菌的分子机制研究[J]. 轻工学报, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006
引用本文: 贾晨阳, 张帆, 刘兰茜, 等. 一株高耐受粗甘油枯草芽孢杆菌的分子机制研究[J]. 轻工学报, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006
JIA Chenyang, ZHANG Fan, LIU Lanxi, et al. Investigation into the molecular mechanism of a Bacillus subtilis strain exhibiting high tolerance to crude glycerol[J]. Journal of Light Industry, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006
Citation: JIA Chenyang, ZHANG Fan, LIU Lanxi, et al. Investigation into the molecular mechanism of a Bacillus subtilis strain exhibiting high tolerance to crude glycerol[J]. Journal of Light Industry, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006

一株高耐受粗甘油枯草芽孢杆菌的分子机制研究

    作者简介:贾晨阳(2000—),男,山东省滨州市人,郑州轻工业大学硕士研究生,主要研究方向为生物技术与工程。E-mail:1765636995@qq.com
    通讯作者: 杨雪鹏, yangxuepeng@zzuli.edu.cn
  • 1. 郑州轻工业大学 烟草科学与工程学院, 河南 郑州 450001;
  • 2. 江西中烟工业有限责任公司 井冈山卷烟厂, 江西 吉安 343100
基金项目:  河南省科技攻关重点研发与推广专项项目(232102311136)河南省自然科学基金重点项目(242300421202)

摘要: 选取高耐受粗甘油的枯草芽孢杆菌为研究对象,利用全基因组和转录组测序技术解析其对高质量浓度粗甘油的耐受机制。结果表明:进化菌株中检测到23个突变基因,涉及ABC转运系统、烟酸与烟酰胺代谢、群体感应、芽孢生成等关键途径。相比出发菌株,进化菌株在甘油(酯)代谢、三羧酸循环、嘌呤代谢、ABC转运系统、能量代谢等途径中的基因表达显著上调,脂肪酸和生物素合成代谢也明显增强;部分丧失芽孢生成能力,稳定中期和后期的芽孢生成率分别下降了38.0%和52.3%;细胞膜新增6种成分,脂肪酸种类和质量浓度均显著增加,磷脂双分子层稳定性增强,这是其高粗甘油耐受性和快速生长的关键原因。

English Abstract

参考文献 (52) 相关文章 (11)

目录

/

返回文章