基于近红外光谱技术有监督模式识别的青皮产地溯源分析
Traceability analysis of Pericarpium Citri Reticulatae Viride origin based on near infrared spectroscopy technology and supervised pattern recognition
-
摘要: 利用便携式近红外光谱仪采集不同产地(安徽、广东、四川)青皮外壁和内囊光谱数据,采用单一预处理和组合预处理方法消除光谱中的多种干扰,结合主成分分析(PCA)、簇类独立软模式分类法(SIMCA)及Fisher 线性判别分析(FLDA)等模式识别方法建立青皮产地溯源模型。结果表明,光谱预处理可以在一定程度上消除基线漂移、背景噪声和谱峰重叠干扰,但无法实现产地溯源。3种模式识别方法中,PCA无法实现青皮产地溯源;青皮外壁和内囊原始光谱的SIMCA模型获得的青皮产地溯源整体鉴别率分别为99.14 %和98.28 %;FLDA模型获得的整体鉴别率均为 99.57 %,优于SIMCA模型;经光谱预处理优化后的SIMCA和FLDA模型对青皮产地溯源的鉴别率均可达100 %,即便携式近红外光谱技术结合有监督模式识别方法可实现青皮产地溯源的无损分析,可为食药同源物质产地溯源拓展新途径。Abstract: Spectral data of the outer wall and inner capsule of Pericarpium Citri Reticulatae Viride from different regions (Anhui, Guangdong, and Sichuan) were collected with portable near infrared spectrometer. Multiple interferences in the spectra were eliminated using single and combined pretreatment methods. Pattern recognition methods such as principal component analysis (PCA), cluster independent soft pattern classification (SIMCA) and Fisher linear discriminant analysis (FLDA) were used to establish traceability models of Pericarpium Citri Reticulatae Viride origin. The results showed that spectral pretreatment could eliminate the interferences of baseline drift, background, and spectral peak overlap to a certain extent. However, the traceability analysis of the origin couldn't be achieved. Among the three pattern recognition methods, accurate traceability analysis of Pericarpium Citri Reticulatae Virid couldn't be achieved with PCA method. The whole identification rate of SIMCA model with the outer wall and inner capsule original spectra were 99.14 % and 98.28 %, respectively. The whole identification rates of FLDA models were both 99.57 %, better than that of SIMCA models. The identification rates of SIMCA and FLDA models with appropriate spectral pretreatment were 100 %. Therefore, portable near infrared spectroscopy technology combined with the supervised pattern recognition methods can achieve non-destructive traceability analysis of Pericarpium Citri Reticulatae Viride origin, expanding a new way for the traceability analysis of food and drug homologous substances origin.
-
-
[1]
何民友,叶瑞平,段志文,等.青皮及其炮制品UPLC指纹图谱与多成分含量测定研究[J].中药材,2022,45(10):2418-2424.
-
[2]
刘龙婵,王星宇,李林楠,等.青皮与陈皮化学成分及分析方法研究进展[J].中国中药杂志,2022,47(11):2866-2879.
-
[3]
任桂林,柯刚,郑琴,等.介孔二氧化硅350FCP固化陈皮、青皮挥发油研究[J].中草药,2021,52(5):1323-1334.
-
[4]
WANG Y,CUI W L,YANG C G,et al.Comparison of Geqingpi and Sihuaqingpi based on ultra-high-performance liquid chromatography-tandem mass spectrometry combined with multivariate statistics,network pharmacology analysis,and molecular docking[J].Journal of Separation Science,2022,45:4079-4098.
-
[5]
余代鑫,郭盛,杨健,等.稳定同位素技术在中药材产地溯源中的应用与展望[J].中国中药杂志,2022,47(4):862-871.
-
[6]
牛露露,刘磊,李瑶瑶,等.柑橘属同源药对青皮-枳壳的薄层色谱鉴别[J].中成药,2022,44(2):667-671.
-
[7]
高薇,王秀,李见春,等.基于HPLC指纹图谱与多元统计分析的太平猴魁产地判别方法[J].轻工学报,2022,37(1):33-39.
-
[8]
靳贝贝,裴香萍,梁惠珍.青皮药材的HPLC指纹图谱建立及聚类分析和主成分分析[J].中国药房,2018,29(24):3336-3339.
-
[9]
KANG K S,OLIKAGU C,LEE T,et al.Sulfenyl chlorides:An alternative monomer feedstock from elemental sulfur for polymer synthesis[J].Journal of the American Chemical Society,2022,144:23044-23052.
-
[10]
杨建云,田孟玉,裴梓烨,等.基于近红外光谱技术的初烤烟叶致香成分含量特性快速定量评价[J].轻工学报,2018,33(5):60-68.
-
[11]
YUAN L B,MENG X R,XIN K H,et al.A comparative study on classification of edible vegetable oils by infrared,near infrared and fluorescence spectroscopy combined with chemometrics[J].Spectrochimica Acta Part A (Molecular and Biomolecular Spectroscopy),2023,288:122120.
-
[12]
PHILLIPS V Z,CANOY R J,PAIK S H,et al.Functional near-infrared spectroscopy as a personalized digital healthcare tool for brain monitoring[J].Journal of Clinical Neurology (Seoul,Korea),2023,19(2):115-124.
-
[13]
帖金鑫,何文苗,李石头,等.基于级联分类的复烤片烟产地预测方法研究[J].轻工学报,2022,37(4):94-99.
-
[14]
OHASHI A,NISHIO T,SAITO A,et al.Baseline drift vector of multiple points on body surface using a near-infrared camera[J].Physical and Engineering Sciences in Medicine,2022,45(1):143-155.
-
[15]
吴木兰,宋萧萧,崔武卫,等.基于近红外光谱技术对南阳豌豆产地鉴别研究[J].光谱学与光谱分析,2023,43(4):1095-1102.
-
[16]
BIAN X H,WANG K Y,TAN E,et al.A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples[J].Chemometrics and Intelligent Laboratory Systems,2020,197:103916.
-
[17]
HAN L,SUN Y,WANG Y,et al.Ultra-high resolution near-infrared spectrum by wavelet packet transform revealing the hydrogen bond interactions[J].Spectrochimica Acta Part A (Molecular and Biomolecular Spectroscopy),2023,289:122233.
-
[18]
WANG Y Q,LIU G M,HU L P,et al.Prediction of anthocyanidins content in purple Chinese cabbage based on visible/near infrared spectroscopy[J].Foods,2023,12(9):1922.
-
[19]
HONG Y S,CHEN Y Y,CHEN S C,et al.Improving spectral estimation of soil inorganic carbon in urban and suburban areas by coupling continuous wavelet transform with geographical stratification[J].Geoderma,2023,430:116284.
-
[20]
HAN X,TAN Z,HUANG Z X,et al.Nondestructive detection of tri-closan in antibacterial hand soaps using digitally labelled Raman spectroscopy[J].Analytical Methods,2017,9(24):3720-3726.
-
[21]
涂蓉玲,王建伟.近红外光谱法青皮药材真伪鉴别研究[J].中国民族民间医药,2014,23(24):15-16.
-
[1]
-

计量
- PDF下载量: 35
- 文章访问数: 3121
- 引证文献数: 0