JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 36 Issue 3
June 2021
Article Contents
ZHANG Zhigang, ZHOU Xiang, MAO Hongsheng and et al. Dynamic analysis of compliant mechanism based on geometrically exact Euler-Bernoulli beam element[J]. Journal of Light Industry, 2021, 36(3): 70-78. doi: 10.12187/2021.03.009
Citation: ZHANG Zhigang, ZHOU Xiang, MAO Hongsheng and et al. Dynamic analysis of compliant mechanism based on geometrically exact Euler-Bernoulli beam element[J]. Journal of Light Industry, 2021, 36(3): 70-78. doi: 10.12187/2021.03.009 shu

Dynamic analysis of compliant mechanism based on geometrically exact Euler-Bernoulli beam element

  • Received Date: 2020-06-17
    Accepted Date: 2020-12-05
  • The problems of dynamic modeling and simulation of compliant mechanisms with large deformation were investigated based on the geometrically exact beam theory (GEBT).Using the assumption of Euler-Bernoulli beam,the deformation field of the large deformation beam element was constructed,which could guarantee the perpendicularity between beam cross section and center line.The generalized element force,mass matrix and external force of the geometrically exact Euler-Bernoulli beam element were derived,and the accurately dynamic models of two typical compliant mechanisms including the compliant four-bar mechanism and spatial arc-guide compliant mechanism were established and simulated.The comparison of numerical results obtained by the proposed method,commercial software ADAMS and the absolute nodal coordinate formulation (ANCF) beam element model showed that using geometrically exact Euler-Bernoulli beam element for dynamic simulation analysis of compliant mechanism had advantages both in calculation efficiency and accuracy.
  • 加载中
    1. [1]

      HOWELL L L.Compliant mechanisms[M].New York:John Wiley and Sons,2001.

    2. [2]

      高峰.机构学研究现状与发展趋势的思考[J].机械工程学报,2005,41(8):3.

    3. [3]

      HOWELL L L,MIDHA A,NORTON T W.Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms[J].Journal of Mechanical Design,1996,118:126.

    4. [4]

      李渊,杜秋月.末端加载力矩的初始弯曲柔性梁1R伪刚体模型[J].机械传动,2018,42(10):35.

    5. [5]

      WANG Z Z,SUN H X,WANG B D,et al.Adaptive pseudo-rigid-body model for generalized cross-spring pivots under combined loads[J].Advances in Mechanical Engineering,2020,12(12):1.

    6. [6]

      VENKITESWARAN V K,SU H.A versatile 3R pseudo-rigid-body model for initially-curved and straight compliant beams of uniform cross-section[J].Journal of Mechanical Design,2018,140(9):092305.

    7. [7]

      余跃庆,周鹏.柔顺机构PR伪刚体模型[J].北京工业大学学报,2013,39(5):641.

    8. [8]

      冯忠磊,余跃庆,王雯静.模拟柔顺机构中柔顺杆件末端特征的2R伪刚体模型[J].机械工程学报,2011,47(1):36.

    9. [9]

      SU H.A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads[J].Journal of Mechanisms and Robotics,2009,1(2):021008.

    10. [10]

      SHE Y,MENG D S,SU H J,et al.Introducing mass parameters to Pseudo-Rigid-Body models for precisely predicting dynamics of compliant mechanisms[J].Mechanism and Machine Theory,2018,126:273.

    11. [11]

      YU Y Q,LI Q,XU Q P.Pseudo-rigid-body dynamic modeling and analysis of compliant mechanisms[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2018,232(9):1665.

    12. [12]

      余跃庆,张娜.含拐点的柔顺机构动力学建模及分析[J].北京工业大学学报,2018,44(4):489.

    13. [13]

      SHABANA A A,YAKOUB R Y.Three dimensional absolute nodal coordinate formulation for beam elements:theory[J].Journal of Mechanical Design,2001,123(4):614.

    14. [14]

      YAKOUB R Y,SHABANA A A.Three dimensional absolute nodal coordinate formulation for beam elements:implementation and applications[J].Journal of Mechanical Design,2001,123(4):614.

    15. [15]

      李鹏飞,曹博宇,汪振宇,等.含线性大变形构件的柔顺机构建模与分析[J].振动与冲击,2019,38(11):118.

    16. [16]

      张志刚,周翔,房占鹏,等.基于绝对节点坐标方法的柔顺机构动力学建模与仿真[J].郑州大学学报(工学版),2020,41(2):50.

    17. [17]

      SIMO J C.A finite strain beam formulation.The three-dimensional dynamics problem.PartⅠ[J].Computer Methods in Applied Mechanics and Engineering,1985,49(1):55.

    18. [18]

      SIMO J C,VU-QUOC L.A three-dimensional finite-strain rod model PartⅡ:computational aspects[J].Computer Methods in Applied Mechanics and Engineering,1986,58(1):79.

    19. [19]

      廖明夫,李岩,王巧艳,等.大尺寸风力机叶片流固耦合特性研究[J].机械科学与技术,2018,37(4):493.

    20. [20]

      张健,齐朝晖,卓英鹏,等.基于精确几何模型梁单元的螺旋弹簧刚度分析[J].工程力学,2020,37(2):16.

    21. [21]

      陈进格,沈昕,王广,等.基于升力面和大变形梁的风力机叶片气弹模型[J].工程热物理学报,2018,39(7):1469.

    22. [22]

      胡建峰,肖勇,杨军刚,等.天线展开过程动力学参数敏感性分析[J].空间电子技术,2017,14(3):58.

    23. [23]

      ZHANG Z G,QI Z H,WU Z G,et al.A spatial Euler-Bernoulli beam element for rigid-flexible coupling dynamic analysis of flexible structures[J].Shock and Vibration,2015,2015:1.

    24. [24]

      SPURRIER R A.Comment on "Singularity-free extraction of a quaternion from a direction-cosine matrix"[J].Journal of Spacecraft and Rockets,1978,15(4):255.

Article Metrics

Article views(2021) PDF downloads(40) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return