JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 36 Issue 3
June 2021
Article Contents
QU Shuanghong, LIU Huijuan and MENG Lingxian. Study on a class of diagonalizable matrix and their properties[J]. Journal of Light Industry, 2021, 36(3): 99-103. doi: 10.12187/2021.03.012
Citation: QU Shuanghong, LIU Huijuan and MENG Lingxian. Study on a class of diagonalizable matrix and their properties[J]. Journal of Light Industry, 2021, 36(3): 99-103. doi: 10.12187/2021.03.012 shu

Study on a class of diagonalizable matrix and their properties

  • Received Date: 2020-12-20
  • Based on the concept of normal matrix,conjugate transpose matrix,characteristic value of matrix and so on,using theory and method of singular value decomposition,some properties of a class of matrix A which meet A*=kA3(0≠kR) were explored.It was found that matrix A could be diagonalized,especially the singular value decomposition form of matrix A was obtained,and the result of the series convergence of correlation matrix was researched under certain conditions,and the convergence property of function sequence of correlation matrix was discussed,so the basic theoretical reserve of diagonalizable matrix was expanded.
  • 加载中
    1. [1]

      刘永勤.对称矩阵特征值分解的FPGA实现[J].现代电子技术,2017,40(12):15.

    2. [2]

      宋磊,何向艳,程艳花,等.三环路压水堆压力容器上腔室交混矩阵数值研究[J].核动力工程,2020,41(4):55.

    3. [3]

      宋新立,陈英时,王成山,等.全过程动态仿真中大型线性方程组的分块求解算法[J].电力系统自动化, 2014,38(4):19.

    4. [4]

      孙静静,赵飞.非负矩阵分解在空间目标图像识别中的应用[J].激光与光电子学进展,2019,56(10):122.

    5. [5]

      赵玉金,钟艳如,黄美发,等.通用GPS标准矩阵模型的信息编码方法研究[J].微电子学与计算机,2009,26(7):45.

    6. [6]

      彭双和,刘佩瑶,赵佳利.基于特征矩阵的Python克隆代码漏洞检测方法[J].武汉大学学报(理学版),2019,65(5):472.

    7. [7]

      秦建国,谢栋梁,王静娜.一类可以对角化的矩阵[J].郑州轻工业学院学报(自然科学版), 2013, 28(2):106.

    8. [8]

      徐新萍.有关对角化问题综述[J].江苏教育学院学报(自然科学版),2010,26(6):44.

    9. [9]

      郭肖亭,孙长库,王鹏.矩阵对角化变换鲁棒QCKF在视觉和惯性融合姿态测量中的应用[J].系统工程与电子技术,2018,40(2):162.

    10. [10]

      高明,孙成越,林少兴,等.一种改进的块对角化预编码算法[J].工程科学与技术,2018,50(2):112.

    11. [11]

      赵利强,陈坤云,王建林,等.基于矩阵对角化变换的高阶容积卡尔曼滤波[J].控制与决策,2016,31(6):1080.

    12. [12]

      HU Y J,CHEN G N.On rank variation of block matrices generated by Nevanlinna matrix function[J].Mathematische Nachrichten,2009,282(4):611.

    13. [13]

      秦建国,陈公宁,何红亚.Cauchy矩阵及其相关的插值问题[J].数学的实践与认识,2006,36(9):233.

    14. [14]

      马明玥,付志慧.Hermitian随机矩阵特征值[J].吉林大学学报(理学版),2016,54(3):513.

    15. [15]

      陈公宁.矩阵理论与应用[M].北京:科学出版社,2007.

    16. [16]

      韩孝明.矩阵奇异值分解算法及应用研究[J].兰州文理学院学报(自然科学版),2021,35(1):14.

    17. [17]

      吴文波,姚新宇,刘丽丽.大规模最小二乘奇异值分解的并行处理方法[J].计算机应用研究,2014,31(11):3253.

    18. [18]

      鲁铁定,周世健,张立亭,等.自由网的奇异值分解算法[J].工程勘察,2008(4):43.

    19. [19]

      刘慧娟,曲双红.满足条件A*=-A3的矩阵性质研究[J].轻工学报,2020,35(6):105.

    20. [20]

      段淑娟,秦建国.反中心自共轭矩阵的一些性质[J].轻工学报,2017,32(6):105.

    21. [21]

      MENDOZA A,RECHT L,VARELA A.Supports for minimal hermitian matrices[J].Linear Algebra and its Applications,2020,584:458.

    22. [22]

      郑舒予,张小宽,郭艺夺.一维GTD散射中心模型参数估计的改进MUSIC算法[J].北京航空航天大学学报,2020,46(11):2149.

Article Metrics

Article views(2001) PDF downloads(5) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return