JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 4
August 2022
Article Contents
YUE Xiaoyue, LI Yan, ZHOU Zijun and et al. Research progress on the fluorescent sensing detection methods for the detection of antibiotic residues[J]. Journal of Light Industry, 2022, 37(4): 41-48,57. doi: 10.12187/2022.04.006
Citation: YUE Xiaoyue, LI Yan, ZHOU Zijun and et al. Research progress on the fluorescent sensing detection methods for the detection of antibiotic residues[J]. Journal of Light Industry, 2022, 37(4): 41-48,57. doi: 10.12187/2022.04.006 shu

Research progress on the fluorescent sensing detection methods for the detection of antibiotic residues

  • Received Date: 2021-06-06
    Accepted Date: 2021-12-09
  • Based on the brief introduction of the dangers of antibiotic residues and the current status of antibiotic detection technology, the fluorescence sensing methods based on carbon quantum dots, semiconductor quantum dots, metal-organic framework materials and upconversion nanomaterials for antibiotic detection application were reviewed. It pointed out that compared with traditional detection methods, fluorescence sensor detection method had the advantages of speediness, high sensitivity and visualization. However, due to the food matrix effect, complex sample pretreatment steps were often required to purify and enrich the target substance. Therefore, appropriate pretreatment technologies or matrix purification methods, new novel fluorescent nanomaterials, portable sensing detection equipment suitable for on-site detection,and the specificity of detection by combining aptamer,antibody and molecular imprinting techniques were the technological trend. It was expected that this review was able to provide a reference and theoretical basis for the practical applications of fluorescence sensing technology in antibiotic detection in the future.
  • 加载中
    1. [1]

      QIAN S H,QIAO L N,XU W X,et al.An inner filter effect-based near-infrared probe for the ultrasensitive detection of tetracyclines and quinolones[J].Talanta,2019,194:598-603.

    2. [2]

      YU L,CHEN H X,YUE J,et al.Metal-organic framework enhances aggregation-induced fluorescence of chlortetracycline and the application for detection[J].Analytical Chemistry,2019,91(9):5913-5921.

    3. [3]

      刘丁溪,杨杰程,周宏超,等.动物性食品中抗菌药物残留检测方法研究进展[J].中国畜牧兽医,2019,46(7):2183-2192.

    4. [4]

      王宏博,高雅琴,杜天庆,等.牛奶中抗生素残留的危害及检测方法的研究进展[J].畜牧与饲料科学,2010,31(4):158-160.

    5. [5]

      梁飞燕,卢日刚.动物源性食品中多兽药残留检测方法的研究进展[J].安徽农业科学,2016,44(26):50-51
      ,68.

    6. [6]

      刘春龙,王成,郭禹.动物源性食品中兽药残留检测研究[J].农业与技术,2019,39(15):42-43.

    7. [7]

      程岁寒,潘存锋,张彦.高效液相色谱法在兽用抗生素残留分析中的应用[J].国外医药(抗生素分册),2019,40(1):37-41.

    8. [8]

      张小军,郑斌,李铁军,等.超高效液相色谱-串联四极杆质谱法测定水产品中氯霉素残留量[J].分析试验室,2010,29(6):115-118.

    9. [9]

      李兴华,苗俊杰,康凯,等.固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J].理化检验(化学分册),2019,55(7
      ):769-777.

    10. [10]

      葛云芝,于小波,周光宏,等.高效液相色谱法同时测定鸡肉中3种四环素类抗生素残留[J].食品科学,2013,34(10):180-183.

    11. [11]

      刘红卫,周围,高黎红,等.超高效液相色谱:串联四极杆质谱法测定肠衣中氯霉素残留量[J].中国兽药杂志,2008,42(2):24-26.

    12. [12]

      GUO X C,XIA Z Y,WANG H H,et al.Molecularly imprinted solid phase extraction method for simultaneous determination of seven nitroimidazoles from honey by HPLC-MS/MS[J].Talanta,2017,166:101-108.

    13. [13]

      LU Z L Z,DENG F F,HE R,et al.A pass-through solid-phase extraction clean-up method for the determination of 11 quinolone antibiotics in chicken meat and egg samples using ultra-performance liquid chromatography tandem mass spectrometry[J].Microchemical Journal,2019,151:104213.

    14. [14]

      VASILESCU A,MARTY J L.Electrochemical aptasensors for the assessment of food quality and safety[J].Trac-Trends in Analytical Chemistry,2016,79:60-70.

    15. [15]

      MENG F W,MA X Y,DUAN N,et al.Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly[J].Talanta,2017,165:412-418.

    16. [16]

      KIM S,LEE H J.Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay[J].Analytical Chemistry,2017,89(12):6624-6630.

    17. [17]

      OUYANG Q,LIU Y,CHEN Q S,et al.Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor[J].Food Control,2017,81:156-163.

    18. [18]

      JAFARI S,DEHGHANI M,NASIRIZADEH N,et al.Label-free electrochemical detection of Cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite[J].Measurement,2019,145:22-29.

    19. [19]

      CHEN T W,RAJAJI U,CHEN S M,et al.Facile synthesis of copper (Ⅱ) oxide nanospheres covered on functionalized multiwalled carbon nanotubes modified electrode as rapid electrochemical sensing platform for super-sensitive detection of antibiotic[J].Ultrasonics Sonochemistry,2019,58:104596.

    20. [20]

      JI W,YAO W R.Rapid surface enhanced Raman scattering detection method for chloramphenicol residues[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,144:125-130.

    21. [21]

      刘小桃.表面等离子体共振技术在环境污染物监测中的应用研究[J].低碳世界,2016(9):25-26.

    22. [22]

      张晨光,陈靖容,刘仁材,等.一种低成本的表面等离子体共振检测系统[J].仪表技术与传感器,2019(5):50-54.

    23. [23]

      李向丽,谭贵良,张娜,等.上转换发光纳米技术及其在食品安全检测中应用研究进展[J].现代食品科技,2014,30(8):280-287.

    24. [24]

      SONG E Q,YU M Q,WANG Y Y,et al.Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk[J].Biosensors&Bioelectronics,2015,72:320-325.

    25. [25]

      CHEN X K,ZHANG X D,XIA L Y,et al.One-step synthesis of ultrasmall and ultrabright organosilica nanodots with 100% photoluminescence quantum yield:Long-term lysosome imaging in living,fixed,and permeabilized cells[J].Nano Letters,2018,18(2):1159-1167.

    26. [26]

      徐龙华,方国臻,王硕.碳点荧光探针在食品检测中的应用[J].食品研究与开发,2017,38(12):192-196.

    27. [27]

      WANG S,ZHANG Y J,PANG G S,et al.Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin a sensor[J].Analytical Chemistry,2017,89(3):1704-1709.

    28. [28]

      DONG Y Q,CAI J H,XU Y,et al.Sensing applications of luminescent carbon based dots[J].The Analyst,2015,140(22):7468-7486.

    29. [29]

      ZHANG Y,GAO Z Y,YANG X,et al.Highly fluorescent carbon dots as an efficient nanoprobe for detection of clomifene citrate[J].RSC Advances,2019,9(11):6084-6093.

    30. [30]

      GOGOI S,DEVI R,DUTTA H S,et al.Ratiometric fluorescence response of a dual light emitting reduced carbon dot/graphene quantum dot nanohybrid towards As (Ⅲ)[J].Journal of Materials Chemistry C,2019,7(33):10309-10317.

    31. [31]

      FU Y Z,HUANG L,ZHAO S J,et al.A carbon dot-based fluorometric probe for oxytetracycline detection utilizing a forster resonance energy transfer mechanism[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2021,246:118947.

    32. [32]

      SHARMA N,YUN K.Dual sensing of tetracycline and L-Lysine using green synthesized carbon dots from Nigella sativa seeds[J].Dyes and Pigments,2020,182:108640.

    33. [33]

      XUE J,LI N N,ZHANG D M,et al.One-step synthesis of a carbon dot-based fluorescent probe for colorimetric and ratiometric sensing of tetracycline[J].Analytical Methods,2020,12(42):5097-5102.

    34. [34]

      XU X G,YANG Y,JIN H,et al.Fungal In situ assembly gives novel properties to CdS<i>xSe1-x quantum dots for sensitive label-free detection of chloramphenicol[J].ACS Sustainable Chemistry&Engineering, 2020, 8(17):6806-6814.

    35. [35]

      REZAEI B,KHORASGANI F H,JAMEI H R,et al.Selective fluorescence determination of amoxicillin antibiotic based on inner filter effect of Glutathione-Capped@CdTe quantum dots with cobalt as a mediating agent[J].IEEE Sensors Journal,2019,19(14):5369-5375.

    36. [36]

      HAN S,YANG L,WEN Z G,et al.A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline[J].Journal of Hazardous Materials,2020,398:122894.

    37. [37]

      GAN Z Y,HU X T,XU X C,et al.A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples[J].Food Chemistry,2021,354:129501.

    38. [38]

      XU N,ZHANG Q H,HOU B S,et al.A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe (Ⅲ) ions, pesticides, and antibiotics with high selectivity and sensitivity[J].Inorganic Chemistry,2018,57(21):13330-13340.

    39. [39]

      TANG Y W,LI M,GAO X,et al.A NIR-responsive up-conversion nanoparticle probe of the NaYF4:Er,Yb type and coated with a molecularly imprinted polymer for fluorometric determination of enrofloxacin[J].Microchimica Acta,2017,184(9):3469-3475.

    40. [40]

      LI H,SUN D E,LIU Y J,et al.An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer[J].Biosensors&Bioelectronics,2014,55:149-156.

    41. [41]

      LI Y Y,DU Q Q,ZHANG X D,et al.Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu3+ fluorescence[J].Talanta,2020,206:120202.

    42. [42]

      LIANG W J,LIU S P,LIU Z Q,et al.Electron transfer and fluorescence"turn-off"based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media[J].New Journal of Chemistry,2015,39(6):4774-4782.

    43. [43]

      ZHANG N Z,ZHANG D W,ZHAO J,et al.Fabrication of a dual-emitting dye-encapsulated metal-organic framework as a stable fluorescent sensor for metal ion detection[J].Dalton Transactions,2019,48(20):6794-6799.

    44. [44]

      WANG P L,XIE L H,OSEPH E A,et al.Metal-organic frameworks for food safety[J].Chemical Reviews,2019,119(18):10638-10690.

    45. [45]

      WU X J,KONG F,ZHAO C Q,et al.Ratiometric fluorescent nanosensors for ultra-sensitive detection of mercury ions based on AuNCs/MOFs[J].The Analyst,2019,144(8):2523-2530.

    46. [46]

      YANG Y,ZHAO L N,SUN M G,et al.Highly sensitive luminescent detection toward polytypic antibiotics by a water-stable and white-light-emitting MOF-76 derivative[J].Dyes and Pigments,2020,180:108444.

    47. [47]

      YANG Y,LU L Q,TIAN X K,et al.Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters[J].Sensors and Actuators B:Chemical,2019,278:82-87.

    48. [48]

      TAO Y,LI M Q,REN J S,et al.Metal nanoclusters:Novel probes for diagnostic and therapeutic applications[J].Chemical Society Reviews,2015,44(23):8636-8663.

    49. [49]

      YANG X M,ZHU S S,DOU Y,et al.Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline[J].Talanta,2014,122:36-42.

Article Metrics

Article views(2298) PDF downloads(63) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return