JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 37 Issue 5
October 2022
Article Contents
WU Fenglong, CUI Yanying, ZHANG Zhifeng and et al. Research progress of methods for biomarker detection[J]. Journal of Light Industry, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006
Citation: WU Fenglong, CUI Yanying, ZHANG Zhifeng and et al. Research progress of methods for biomarker detection[J]. Journal of Light Industry, 2022, 37(5): 50-60. doi: 10.12187/2022.05.006 shu

Research progress of methods for biomarker detection

  • Received Date: 2021-06-11
    Accepted Date: 2022-01-20
  • The application research progress of biomarker detection methods based on genetic material (RNA and DNA), immunology (antigen/antibody) and combined with microchip technology was reviewed. It was pointed out that the detection method based on genetic material acted directly on the target substance, and had high accuracy and good sensitivity, but it had many detection steps and high requirements for the detection environment; The detection method based on immunology was simple to operate, had high portabihity, and could realize instant detection. However, the accuracy was slightly lower. It was suitable for rapid and large-scale virus screening; Combining with microchip technology made the detection method more diverse. It could realize the detection of target substances in a short time, and the accuracy and degree of automation have been improved. This method showed great development potential in virus screening and disease diagnosis. In the future, the detection technology of biomarkers could be further studied in terms of optimizing the catalyst of the reaction, increasing the degree of purification of nucleic acid extracts, improving the automation of detection equipment, building multiple detection systems, realizing the miniaturization of detection equipment and visualization of detection information, etc. to improve detection accuracy and equipment portability so as to realize the continuous development of this technology.
  • 加载中
    1. [1]

      XIE V.Effective biomarker measurement is key for biotherapeutic development[J].Bioanalysis,2022,14(8):451-453.

    2. [2]

      JAYANTHI V S A,DAS A B,SAXEBA U.Recent advances in biosensor development for the detection of cancer biomarkers[J].Biosensors and Bioelectronics,2017,91:15-23.

    3. [3]

      HUANG L Y,WU H W,HSIEH K,et al.Microfluidic platforms for discovery and detection of molecular biomarkers[J].Microfluidics and Nanofluidics,2014,16(5):941-963.

    4. [4]

      LIU R T,YE X Y,CUI T H.Recent progress of biomarker detection sensors[J].Research,2020,2020:1-26.

    5. [5]

      CHAN J F W,YUAN S F,KOK K H,et al.A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission:A study of a family cluster[J].Lancet,2020,395(10223):514-523.

    6. [6]

      ORAN D P,TOPOL E J.Prevalence of asymptomatic SARS-CoV-2 infection:A narrative review[J].Ann Intern Med,2020,173(5):362-367.

    7. [7]

      TANACAN A,EROL S,TURGAY B,et al.The rate of SARS-CoV-2 positivity in asymptomatic pregnant women admitted to hospital for delivery:Experience of a pandemic center in Turkey[J].European Journal of Obstetrics&Gynecology and Reproductive Biology,2020,253:31-34.

    8. [8]

      CHEN Z,WU Y Q,CHEN H,et al.Design and application of automatic and rapid nucleic acid extractor using magnetic nanoparticles[J].Journal of Nanoscience and Nanotechnology,2016,16(7):6998-7004.

    9. [9]

      TANG C I,HE Z Y,LIU H M,et al.Application of magnetic nanoparticles in nucleic acid detection[J].Journal of Nanobiotechnology,2020,18:1-19.

    10. [10]

      AI T,YANG Z L,HOU H Y,et al.Correlation of chest CT and RT-PCR testing for coronavirus disease 2019(COVID-19) in China:A report of 1014 cases[J].Radiology,2020,296(2):E32-E40.

    11. [11]

      何久香,丁晓艳,周晓杨,等.一种快速灵敏的非洲猪瘟病毒荧光定量PCR检测方法的建立[J].中国病原生物学杂志,2022,17(5):497-501
      ,508.

    12. [12]

      KILANI M M,ODEH M M,SHALABI M,et al.Clinical and laboratory characteristics of SARS-CoV2-infected paediatric patients in Jordan:Serial RT-PCR testing until discharge[J].Paediatrics and International Child Health,2021,41(1):83-92.

    13. [13]

      CORMAN V M,LANDT O,KAISER M,et al.Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR[J].Eurosurveillance,2020,25(3):2000045.

    14. [14]

      钟慧钰,赵珍珍,宋兴勃,等.新型冠状病毒核酸临床检测要点及经验[J].国际检验医学杂志,2020,41(5):523-526.

    15. [15]

      FALZONE L,MUSSO N,GATTUSO G,et al.Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection[J].International Journal of Molecular Medicine,2020,46(3):957-964.

    16. [16]

      CHEN J Q,HEALEY S,REGAN P,et al.PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources[J].Food Science and Human Wellness,2017,6(2):39-59.

    17. [17]

      苗小草,陈万义,施春雷,等.乳品中4种常见致病菌多重PCR检测方法的建立[J].河南工业大学学报(自然科学版),2018,39(1
      ):63-71.

    18. [18]

      NOTOMI T,MORI Y,TOMITA N,et al.Loop-mediated isothermal amplification (LAMP):Principle, features, and future prospects[J].Journal of Microbiology,2015,53(1):1-5.

    19. [19]

      OH S J,PARK B H,JUNG J H,et al.Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection[J].Biosensors and Bioelectronics,2016,75:293-300.

    20. [20]

      BESUSCHIO S A,LLANO MURCIA M,BENATAR A F,et al.Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples[J].PLoS Neglected Tropical Diseases,2017,11(7):e0005779.

    21. [21]

      BASU A,ZINGER T,INGLIMA K,et al.Performance of Abbott ID Now COVID-19 rapid nucleic acid amplification test using nasopharyngeal swabs transported in viral transport media and dry nasal swabs in a New York City academic institution[J].Journal of Clinical Microbiology,2020,58(8):e01136-20.

    22. [22]

      岳晓红,宋银森,葛丽丽,等.实时荧光核酸恒温扩增检测技术、胶体金法、酶联免疫法在检测儿童肺炎支原体感染中的应用比较[J].中国卫生检验杂志,2018,28(16):1965-1969.

    23. [23]

      LI J Q,SUN L,WU X R,et al.Early diagnosis of mycoplasma pneumonia in children:Simultaneous amplification and testing (SAT) is the key[J].Frontiers in Pediatrics,2019,7:441.

    24. [24]

      TANG M Y,WANG D,TONG X,et al.Comparison of different detection methods for Mycoplasma pneumonia infection in children with community-acquired pneumonia[J]. BMC Pediatrics,2021,21(1):1-8.

    25. [25]

      刘宁,王超,王芳芳,等.DNA分析技术在单基因遗传病产前诊断中的研究进展[J].中国计划生育学杂志,2021,29(9):2007-2012.

    26. [26]

      WANG M,FU A S,HU B,et al.Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses[J].Small,2020,16(32):2002169.

    27. [27]

      TAFESS K,NG T T L,LAO H Y,et al.Targeted-sequencing workflows for comprehensive drug resistance profiling of Mycobacterium tuberculosis cultures using two commercial sequencing platforms:Comparison of analytical and diagnostic performance,turnaround time,and cost[J].Clinical Chemistry,2020,66(6):809-820.

    28. [28]

      LIU R,FU A S,DENG Z X,et al.Promising methods for detection of novel coronavirus SARS-CoV-2[J].View,2020,1(1):e4.

    29. [29]

      ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science,2016,353(6299):aaf5573.

    30. [30]

      FAREH M,ZHAO W,HU W X,et al.Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance[J].Nature Communications,2021,12:4270.

    31. [31]

      BOSE S K,WHITE B M,KASHYAP M V,et al.In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease[J].Nature Communications,2021,12:4291.

    32. [32]

      朱珠,陈安林,彭丹,等.布鲁氏菌病的诊断及治疗方法研究进展[J].山东医药,2017,57(7):104-107.

    33. [33]

      AMANAT F,STADLBAUER D,STROHMEIER S,et al.A serological assay to detect SARS-CoV-2 seroconversion in humans[J].Nature Medicine,2020,26(7):1033-1036.

    34. [34]

      XIANG T X,JIANG Z,ZHENG J,et al.A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus[J].International Journal of Molecular Medicine,2012,30(5):1041-1047.

    35. [35]

      MADIYA M,SAGAR S,VISHWANATH S,et al.Comparing assay performance of ELISA and chemiluminescence immunoassay in detecting antibodies to hepatitis B surface antigen[J].Journal of Clinical and Diagnostic Research,2016,10(11):DC22-DC25.

    36. [36]

      AFZAL N,TARIQ N,RAZA S,et al.Diagnostic accuracy of electro-chemiluminescence immunoassay anti-SARS-CoV-2 serological test[J].Cureus,2021,13(1):e12588.

    37. [37]

      CHANG L,ZHAO J P,GUO F,et al.Comparative evaluation and measure of accuracy of ELISAs, CLIAs, and ECLIAs for the detection of HIV infection among blood donors in China[J].The Canadian Journal of Infectious Diseases&Medical Microbiology,2020,2020:2164685.

    38. [38]

      PAN D,FANG Z Z,YANG E L,et al.Facile preparation of WO3-x dots with remarkably low toxicity and uncompromised activity as co-reactants for clinical diagnosis by electrochemiluminescence[J].Angewandte Chemie International Edition,2020,59(38):16747-16754.

    39. [39]

      NIE Y M,YUAN X D,ZHANG P,et al.Versatile and ultrasensitive electrochemiluminescence biosensor for biomarker detection based on nonenzymatic amplification and aptamer-triggered emitter release[J].Analytical Chemistry,2019,91(5):3452-3458.

    40. [40]

      张来宾,张珊珊,杨文,等.胶体金免疫层析技术在食品检测中的应用[J].吉林农业,2018(8):88.

    41. [41]

      JU Y,HAO H J,XIONG G H,et al.Development of colloidal gold-based immunochromatographic assay for rapid detection of Streptococcus suis serotype 2[J].Veterinary Immunology&Immunopathology,2010,133(2/4):207-211.

    42. [42]

      张稳健,吕欣,黄驰,等.胶体金免疫层析法检测新型冠状病毒IgM/IgG抗体的临床评价与应用[J].病毒学报,2020,36(3):348-354.

    43. [43]

      谢艳君.胶体金试纸条现场可视化检测中药中黄曲霉毒素B1研究[D].长春:吉林农业大学,2016.

    44. [44]

      HUANG Z,HU S,XIONG Y H,et al.Application and development of super paramagnetic nanoparticles in sample pretreatment and immunochromatographic assay[J].TrAC Trends in Analytical Chemistry,2019,114:151-170.

    45. [45]

      DOBSON J.Gene therapy progress and prospects:Magnetic nanoparticle-based gene delivery[J].Gene Therapy,2006,13(4):283.

    46. [46]

      XIA S Q,YU Z B,LIU D F,et al.Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk[J].Food Control,2016,59:507-512.

    47. [47]

      张博.基于磁致荧光淬灭性能的双模态免疫层析检测技术初探[D].天津:天津大学,2018.

    48. [48]

      邵奕霖.磁免疫微流控芯片的研制及其在肺炎链球菌检测中的应用[D].南昌:南昌大学,2018.

    49. [49]

      WIBOWO N A,JUHARNI J,ALFANSURI T,et al.Core-shell Fe3O4@Ag magnetic nanoparticles detection using spin-valve GMR sensing element in the wheatstone bridge circuit[J].Materials Research Express,2020,7(12):126102.

    50. [50]

      LOONG L M,LEE W,QIU X,et al.Flexible MgO barrier magnetic tunnel junctions[J].Advanced Materials,2016,28(25):4983-4990.

    51. [51]

      SUN X C,LEI C,GUO L,et al.Separable detecting of Escherichia coli O157H:H7 by a giant magneto-resistance-based bio-sensing system[J].Sensors and Actuators B-Chemical,2016,234:485-492.

    52. [52]

      SHARMA P P,ALBISETTI E,MASSETTI M,et al.Integrated platform for detecting pathogenic DNA via magnetic tunneling junction-based biosensors[J].Sensors and Actuators B-Chemical,2017,242:280-287.

    53. [53]

      LI L,MAK K Y,ZHOU Y.Detection of HIV-1 antigen based on magnetic tunnel junction sensors[J].Chinese Physics B,2020,29(8):088701.

    54. [54]

      CHOI J,GANI A W,BECHSTEIN D J B,et al.Portable,one-step,and rapid GMR biosensor platform with smartphone interface[J].Biosensors and Bioelectronics,2016,85:1-7.

    55. [55]

      WU K,SU D Q,SAHA R,et al.Magnetic particle spectroscopy-based bioassays:Methods,applications,advances,and future opportunities[J].Journal of Physics D (Applied Physics),2019,52(17):173001.

    56. [56]

      UTKUR M,MUSLU Y,SARITAS E U.Relaxation-based viscosity mapping for magnetic particle imaging[J].Physics in Medicine&Biology,2017,62(9):3422.

    57. [57]

      WU K,LIU J M,SAHA R,et al.Magnetic particle spectroscopy for detection of influenza a virus subtype H1N1[J].ACS Applied Materials&Interfaces,2020,12(12):13686-13697.

    58. [58]

      赵兴一.磁免疫测量机电系统研究与设计[D].武汉:华中科技大学,2019.

    59. [59]

      DASH A,BLASIAK B,TOMANEK B,et al.Validation of Inner, second, and outer sphere contributions to T1 and T2relaxation in Gd3+-based nanoparticles using Eu3+ lifetime decay as a probe[J].The Journal of Physical Chemistry C,2018,122(21):11557-11569.

    60. [60]

      LIONG M,HOANG A H,CHUNG J,et al.Magnetic barcode assay for genetic detection of pathogens[J].Nature Communications,2013,4(1):1-9.

    61. [61]

      KUSUNOKI H,TANAKA T,KOHNO T,et al.NMR characterization of the interaction between Bcl-xL and the BH3-like motif of hepatitis B virus X protein[J].Biochemical and Biophysical Research Communications,2019,518(3):445-450.

    62. [62]

      DAPIAGGI F,PIERACCINI S,POTENZA D,et al.Computer aided design and NMR characterization of an oligopeptide targeting the Ebola virus VP24 protein[J].New Journal of Chemistry,2017,41(11):4308-4315.

    63. [63]

      SAMIEI E,TABRIZIAN M,HOORFAR M.A review of digital microfluidics as portable platforms for lab-on a-chip applications[J].Lab on a Chip,2016,16(13):2376-2396.

    64. [64]

      刘赵淼,杨洋,杜宇,等.微流控液滴技术及其应用的研究进展[J].分析化学,2017,45(2):282-296.

    65. [65]

      朱灿灿.病原体核酸一体化并行检测微流控芯片研究[D].合肥:中国科学技术大学,2019.

    66. [66]

      SAYAD A A,IBRAHIM F,UDDIN S M,et al.A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection[J].Sensors and Actuators B-Chemical,2016,227:600-609.

    67. [67]

      王艺蓓.基于微液滴的球刷-酶信号放大系统及其数字ELISA应用初探[D].上海:上海交通大学,2019.

    68. [68]

      BIAN M M,ZHANG Y,YUAN Y L.Research progress of electrochemical biosensing platform based on microfluidics[J].Journal of Analytical Science,2019,35(5):657-664.

    69. [69]

      FARZBOD A,MOON H,et al.Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform[J].Biosensors&Bioelectronics,2018,106:37-42.

    70. [70]

      PETKOVIC K,METCALFE G,CHEN H,et al.Rapid detection of Hendra virus antibodies:An integrated device with nanoparticle assay and chaotic micromixing[J].Lab on a Chip,2017,17(1):169-177.

Article Metrics

Article views(5101) PDF downloads(107) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return