JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

甾醇分子差异对脂质体结构稳定性的影响

邓莉梅 刘宇佳 朱杰 于泓鹏

邓莉梅, 刘宇佳, 朱杰, 等. 甾醇分子差异对脂质体结构稳定性的影响[J]. 轻工学报, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004
引用本文: 邓莉梅, 刘宇佳, 朱杰, 等. 甾醇分子差异对脂质体结构稳定性的影响[J]. 轻工学报, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004
DENG Limei, LIU Yujia, ZHU Jie and et al. Effect of sterol molecular difference on the structural stability of liposomes[J]. Journal of Light Industry, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004
Citation: DENG Limei, LIU Yujia, ZHU Jie and et al. Effect of sterol molecular difference on the structural stability of liposomes[J]. Journal of Light Industry, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004

甾醇分子差异对脂质体结构稳定性的影响

    作者简介: 邓莉梅(1996-),女,四川省资阳市人,广东工业大学硕士研究生,主要研究方向为食品递送系统。E-mail:1176993285@qq.com;
  • 基金项目: 国家自然科学基金青年基金项目(31901682);广东省普通高校青年创新人才类项目(2018KQNCX259);广东省创新强校工程创新团队项目(2021KCXTD035)

  • 中图分类号: TS201.1

Effect of sterol molecular difference on the structural stability of liposomes

  • Received Date: 2022-02-27

    CLC number: TS201.1

  • 摘要: 通过添加胆固醇、 β-谷甾醇和豆甾醇,采用乙醇注入法结合动态高压微流射技术制备甾醇脂质体,研究不同甾醇对脂质体膜结构稳定性的影响。结果表明:β-谷甾醇和豆甾醇的加入,使甾醇脂质体粒径从(48.35±0.41)nm分别增至(106.27±0.90)nm和(107.27±0.59)nm,Zeta电位保持不变,均在-30 mV左右;电子显微镜观察发现,添加甾醇的脂质体形成了稳定的磷脂双分子层结构;甾醇可以使脂质体的盐稳定性和pH稳定性增强,但对温度稳定性无显著影响;β-谷甾醇和豆甾醇的加入使脂质体膜的流动性、疏水性和微极性都显著减小,这表明脂质体磷脂双分子膜的结构变得更加致密。
    1. [1]

      AKHAVAN S,ASSADPOUR E,KATOUZIAN I,et al.Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals[J].Trends in Food Science & Technology,2018,74:132-146.

    2. [2]

      SUBRAMANI T,GANAPATHYSWAMY H.An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical[J].Journal of Food Science and Technology,2020,57(10):3545-3555.

    3. [3]

      ISLAM SHISHIR M R,KARIM N,GOWD V,et al.Liposomal delivery of natural product:A promising approach in health research[J].Trends in Food Science & Technology,2019,85:177-200.

    4. [4]

      AKGÜN D,GÜLTEKIN-ÖZGÜVEN M,YÜCETEPE A,et al.Stirred-type yoghurt incorporated with sour cherry extract in chitosan-coated liposomes[J].Food Hydrocolloids,2020,101:105532.

    5. [5]

      KARIMI N,GHANBARZADEH B,HAJIBONABI F,et al.Turmeric extract loaded nanoliposome as a potential antioxidant and antimicrobial nanocarrier for food applications[J].Food Bioscience,2019,29:110-117.

    6. [6]

      CUI H Y,YUAN L,LI W,et al.Antioxidant property of SiO2-eugenol liposome loaded nanofibrous membranes on beef[J].Food Packaging and Shelf Life,2017,11:49-57.

    7. [7]

      DIDAR Z.Enrichment of dark chocolate with vitamin D3 (free or liposome) and assessment quality parameters[J]. Journal of Food Science and Technology,2021,58(8):3065-3072.

    8. [8]

      GULZAR S,BENJAKUL S.Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization[J].Food Chemistry,2020,310:125916.

    9. [9]

      BELTRÁN J D,RICAURTE L,ESTRADA K B,et al.Effect of homogenization methods on the physical stability of nutrition grade nanoliposomes used for encapsulating high oleic palm oil[J].LWT-Food Science and Technology,2020,118:108801.

    10. [10]

      LI Z L,PENG S F,CHEN X,et al.Effect of dynamic high pressure microfluidization on structure and stability of pluronic F127 modified liposomes[J]. Journal of Dispersion Science and Technology,2019,40(7):982-989.

    11. [11]

      ALEXANDER M,ACERO LOPEZ A,FANG Y,et al.Incorporation of phytosterols in soy phospholipids nanoliposomes:Encapsulation efficiency and stability[J].LWT-Food Science and Technology,2012,47(2):427-436.

    12. [12]

      SARABANDI K,JAFARI S M.Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions:Stability during spray-drying[J].Food Chemistry,2020,310:125951.

    13. [13]

      LI Z L,PENG S F,CHEN X,et al.Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility[J].Food Research International,2018,108:246-253.

    14. [14]

      CADDEO C,PUCCI L,GABRIELE M,et al.Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol[J].International Journal of Pharmaceutics,2018,538(1/2):40-47.

    15. [15]

      WANG Q,PAN M H,CHIOU Y S,et al.Mechanistic understanding of the effects of ovalbumin-nanoliposome interactions on ovalbumin emulsifying properties[J].LWT-Food Science and Technology,2022,157:113067.

    16. [16]

      LIU W L,HOU Y Y,JIN Y Y,et al.Research progress on liposomes:Application in food, digestion behavior and absorption mechanism[J].Trends in Food Science & Technology,2020,104:177-189.

    17. [17]

      SUI W H,LI H S,YANG Y L,et al.Bladder drug mirabegron exacerbates atherosclerosis through activation of brown fat-mediated lipolysis[J]. Proceedings of the National Academy of Sciences,2019,116(22):10937-10942.

    18. [18]

      BABU S,JAYARAMAN S.An update on β-sitosterol: A potential herbal nutraceutical for diabetic management[J].Biomedicine & Pharmacotherapy,2020,131:110702.

    19. [19]

      TAI K D,RAPPOLT M,MAO L K,et al.Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids[J].Food Chemistry,2020,326:126973.

    20. [20]

      TAI K D,RAPPOLT M,HE X Y,et al.Effect of β-sitosterol on the curcumin-loaded liposomes:Vesicle characteristics,physicochemical stability,in vitro release and bioavailability[J].Food Chemistry,2019,293:92-102.

    21. [21]

      TAI K D,LIU F G,HE X Y,et al.The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability,structure and membrane characteristics[J].Food Research International,2018,109:24-34.

    22. [22]

      杨贝贝,曹栋,耿亚男,等.植物甾醇与胆固醇对脂质体膜性质的影响[J].食品工业科技,2013,34(7):77-81.

    23. [23]

      黎雨浩,李照莹,周伟,等.火龙果茎植物甾醇对姜黄素纳米脂质体稳定性以及释放性能的影响[J].食品科学,2020,41(16):68-76.

    24. [24]

      MORINI M A,SIERRA M B,PEDRONI V I,et al.Influence of temperature,anions and size distribution on the zeta potential of DMPC,DPPC and DMPE lipid vesicles[J].Colloids and Surfaces B(Biointerfaces),2015,131:54-58.

    25. [25]

      HURJUI I,NEAMTU A,DOROHOI D O.The interaction of fluorescent DPH probes with unsaturated phospholipid membranes: A molecular dynamics study[J].Journal of Molecular Structure,2013,1044:134-139.

    26. [26]

      SILVA C,ARANDA F J,ORTIZ A,et al.Molecular aspects of the interaction between plants sterols and DPPC bilayers:An experimental and theoretical approach[J].Journal of Colloid and Interface Science,2011,358(1):192-201.

    27. [27]

      FAN R,GAN L,LIU M,et al.An interaction of helicid with liposome biomembrane[J].Applied Surface Science,2011,257(6):2102-2106.

    28. [28]

      MAZOR S,VANOUNOU S,FISHOV I.Pyrene as a membrane depth gauge:Wavelength selective fluorescence approach to monitor pyrene localizations in the membrane[J].Chemistry and Physics of Lipids,2012,165(1):125-131.

    29. [29]

      PAN L,LI H,HOU L F,et al.Gastrointestinal digestive fate of whey protein isolate coated liposomes loading astaxanthin:Lipolysis,release,and bioaccessibility[J].Food Bioscience,2022,45:101464.

    30. [30]

      MOURITSEN O G.Lipids,curvature, and nano-medicine[J].European Journal of Lipid Science and Technology,2011,113(10):1174-1187.

    31. [31]

      SMITH M C,CRIST R M,CLOGSTON J D,et al.Zeta potential:A case study of cationic, anionic, and neutral liposomes[J].Analytical and Bioanalytical Chemistry,2017,409(24):5779-5787.

    1. [1]

      王小媛耿君君靳学远牛涵王龙霞 . 基于不同杀菌方式的杜仲籽油-苹果汁复合饮料贮藏稳定性评价. 轻工学报, 2024, 39(2): 1-11. doi: 10.12187/2024.02.001

    2. [2]

      楚文娟樊文鹏高子婷韩路田海英姬小明万纪强来苗 . 新型保润剂丙二醇吡咯酯的制备及其对再造烟叶保润效果研究. 轻工学报, 2024, 39(2): 87-93. doi: 10.12187/2024.02.011

    3. [3]

      杜秋唐辉孙军华谭益升吴梓仟蒋立文刘洋 . 即食豆干加工过程中的细菌污染溯源. 轻工学报, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004

    4. [4]

      郭华诚胡仙妹高尊华李金周王红霞 . 针辊式烟丝结构调控设备参数变化对细支烟卷制品质的影响. 轻工学报, 2024, 39(2): 122-126. doi: 10.12187/2024.02.016

  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  2575
  • 引证文献数: 0
文章相关
  • 收稿日期:  2022-02-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
邓莉梅, 刘宇佳, 朱杰, 等. 甾醇分子差异对脂质体结构稳定性的影响[J]. 轻工学报, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004
引用本文: 邓莉梅, 刘宇佳, 朱杰, 等. 甾醇分子差异对脂质体结构稳定性的影响[J]. 轻工学报, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004
DENG Limei, LIU Yujia, ZHU Jie and et al. Effect of sterol molecular difference on the structural stability of liposomes[J]. Journal of Light Industry, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004
Citation: DENG Limei, LIU Yujia, ZHU Jie and et al. Effect of sterol molecular difference on the structural stability of liposomes[J]. Journal of Light Industry, 2023, 38(2): 33-40. doi: 10.12187/2023.02.004

甾醇分子差异对脂质体结构稳定性的影响

    作者简介:邓莉梅(1996-),女,四川省资阳市人,广东工业大学硕士研究生,主要研究方向为食品递送系统。E-mail:1176993285@qq.com
  • 1. 广东工业大学 轻工化工学院, 广东 广州 510006;
  • 2. 东莞理工学院 化学工程与能源技术学院/中国轻工业健康食品开发与营养调控重点实验室, 广东 东莞 523808
基金项目:  国家自然科学基金青年基金项目(31901682);广东省普通高校青年创新人才类项目(2018KQNCX259);广东省创新强校工程创新团队项目(2021KCXTD035)

摘要: 通过添加胆固醇、 β-谷甾醇和豆甾醇,采用乙醇注入法结合动态高压微流射技术制备甾醇脂质体,研究不同甾醇对脂质体膜结构稳定性的影响。结果表明:β-谷甾醇和豆甾醇的加入,使甾醇脂质体粒径从(48.35±0.41)nm分别增至(106.27±0.90)nm和(107.27±0.59)nm,Zeta电位保持不变,均在-30 mV左右;电子显微镜观察发现,添加甾醇的脂质体形成了稳定的磷脂双分子层结构;甾醇可以使脂质体的盐稳定性和pH稳定性增强,但对温度稳定性无显著影响;β-谷甾醇和豆甾醇的加入使脂质体膜的流动性、疏水性和微极性都显著减小,这表明脂质体磷脂双分子膜的结构变得更加致密。

English Abstract

参考文献 (31) 相关文章 (4)

目录

/

返回文章