JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 4
August 2023
Article Contents
LI Xihong, YANG Mengjiao, LIANG Fuhao, et al. Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology[J]. Journal of Light Industry, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002
Citation: LI Xihong, YANG Mengjiao, LIANG Fuhao, et al. Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology[J]. Journal of Light Industry, 2023, 38(4): 11-19. doi: 10.12187/2023.04.002 shu

Research progress on regulation of endogenous enzyme activities of fruit and vegetable products by non-thermal processing technology

  • Received Date: 2023-02-15
    Accepted Date: 2023-05-29
  • Based on the advantages of non-thermal processing technology, such as low-temperature sterilization, better maintenance of the original nutrients, color, and freshness of fruit and vegetable products, the regulation effect and regulation mechanism of five commonly used non-thermal processing technologies on the endogenous enzyme activity of fruit and vegetable products were reviewed. Ultrahigh pressure, ultrasonic, atmospheric pressure cold plasma, ultraviolet radiation, and pulsed electric field technology can significantly reduce the activity of endogenous enzymes by destroying their spatial structure. These non-thermal processing technologies have advantages in regulating the endogenous enzyme activity of fruit and vegetable products, which can not only improve the quality of fruit and vegetable product, but also provide effective means and schemes for processing and storage of fruit and vegetable products. The deactivation mechanical models of endogenous enzymes in fruit and vegetable products mainly include the first-order model, biphase model, Weibull model, Hulsheger's and Fermi's empirical models, etc. By studying these models, we can further understand the mechanism of non-thermal processing technology regulating endogenous enzyme activity in fruit and vegetable products, and then optimize the processing scheme of fruit and vegetable products to ensure the quality and safety of products. However, the research of non-thermal processing technology is still in the experimental stage, and the mechanism of regulating the endogenous enzyme activity of fruit and vegetable products is not completely clear, and there are still problems such as high equipment cost and obvious safety risks in actual production. In the future, the process parameters of non-thermal processing technology should be further improved and optimized, the regulation mechanism of non-thermal processing technology on endogenous enzyme activity of fruit and vegetable products should be deeply explored, a variety of non-thermal processing technologies should be jointly applied, and minimize the impact on the quality of fruit and vegetable produets as much as possible, to provide references for the application of non-thermal processing technology in deep processing of fruits and vegetables and industrial production of products.
  • 加载中
    1. [1]

      杨晓羽, 唐先谱, 郭艳利, 等.高二氧化碳处理对青柠檬保绿的效果[J].食品工业, 2019, 40(6):5-8.

    2. [2]

      MA L, ZHANG M, BHANDARI B, et al.Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables[J].Trends in Food Science & Technology, 2017, 64:23-38.

    3. [3]

      王志华, 贾朝爽, 谭焕光, 等.采收期结合1-MCP对苹果采后生理和贮藏品质的影响[J].农业工程学报, 2022, 38(20):293-300.

    4. [4]

      毛相朝, 李娇, 陈昭慧.非热加工技术对食品内源酶的控制研究进展[J].中国食品学报, 2021, 21(12):1-13.

    5. [5]

      闫凤娇.国内外食品非热加工技术发展状况[J].食品安全导刊, 2020(18):178.

    6. [6]

      BENITO-ROMÁN Ó, SANZ T M, MELGOSA R, et al.Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD)[J].The Journal of Supercritical Fluids, 2019, 147:310-321.

    7. [7]

      DARS A G, HU K, LIU Q D, et al.Effect of thermo-sonication and ultra-high pressure on the quality and phenolic profile of mango juice[J].Foods, 2019, 8(8):298.

    8. [8]

      冯若怡, 王晓钰, 杨云舒, 等.超高压处理对复合苹果泥微生物和品质的影响[J].食品工业科技, 2020, 41(17):37-44.

    9. [9]

      KAUSHIK N, RAO S P, MISHRA H N.Effect of high pressure and thermal processing on spoilage-causing enzymes in mango (Mangifera indica)[J].Food Research International, 2017, 100:885-893.

    10. [10]

      TRIBST A A L, JÚNIORB R R C L, DE OLIVEIRA M M, et al.High pressure processing of cocoyam, Peruvian carrot and sweet potato:Effect on oxidative enzymes and impact in the tuber color[J].Innovative Food Science and Emerging Technologies, 2016, 34:302-309.

    11. [11]

      XU J Y, WANG Y L, ZHANG X Y, et al.A novel method of a high pressure processing pre-treatment on the juice yield and quality of persimmon[J].Foods, 2021, 10(12):3069.

    12. [12]

      HOUSKA M, SILVA F V M, EVELYN, et al.High pressure processing applications in plant foods[J].Foods, 2022, 11(2):223.

    13. [13]

      DE JESUS A L T, LEITE T S, CRISTIANIANINI M.High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius):Effect on pulp color and inactivation of peroxidase and polyphenol oxidase[J].Food Research International, 2018, 105:853-862.

    14. [14]

      KHALIQ A, CHUGHTAI M F J, MEHMOOD T, et al.High-pressure processing;principle, applications, impact, and future prospective[M]//Sustainable food processing and engineering challenges.Academic Press, 2021:75-108.

    15. [15]

      TEREFE N S, DELON A, VERSTEEG C.Thermal and high pressure inactivation kinetics of blueberry peroxidase[J].Food Chemistry, 2017, 232:820-826.

    16. [16]

      BLEOANCA I, NEAGU C, TURTOI M, et al.Mild-thermal and high pressure processing inactivation kinetics of polyphenol oxidase from peach puree[J].Journal of Food Process Engineering, 2018, 41(7):e12871.

    17. [17]

      WANG P, QUANSAH J K, PITTS K B, et al.Hygiene status of fresh peach packing lines in georgia[J].LWT-Food Science and Technology, 2021, 139:110627.

    18. [18]

      CHEN L L, BI X F, CAO X M, et al.Effects of high-power ultrasound on microflora, enzymes and some quality attributes of a strawberry drink[J].Journal of the Science of Food and Agriculture, 2018, 98(14):5378-5385.

    19. [19]

      IQBAL A, MURTAZA A, MARSZALEK K, et al.Inactivation and structural changes of polyphenol oxidase in quince (Cydonia oblonga Miller) juice subjected to ultrasonic treatment[J].Journal of the Science of Food and Agriculture, 2020, 100(5):2065-2073.

    20. [20]

      ILLERA A E, SANZ M T, BENITO-ROMAN O, et al.Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice[J].Innovative Food Science and Emerging Technologies, 2018, 47:71-80.

    21. [21]

      周亨乐, 赵剑雷, 冯小平, 等.高场强超声波对芒果多酚氧化酶和过氧化物酶钝化效果的研究[J].保鲜与加工, 2020, 20(2):68-73.

    22. [22]

      TSIKRIKA K, CHU B S, BREMNER H D, et al.The effect of different frequencies of ultrasound on the activity of horseradish peroxidase[J].LWT-Food Science and Technology, 2018, 89:591-595.

    23. [23]

      TSIKRIKA K, LEMOS M A, CHU B S, et al.Effect of ultrasound on the activity of mushroom (Agaricus bisporous) polyphenol oxidase and observation of structural changes using time-resolved fluorescence[J].Food and Bioprocess Technology, 2022, 15(3):656-668.

    24. [24]

      CAO X M, CAI C F, WANG Y L, et al.The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments[J].Innovative Food Science & Emerging Technologies, 2018, 45:169-178.

    25. [25]

      SUO G W, ZHOU C L, SU W, et al.Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage[J].Ultrasonics Sonochemistry, 2022, 84:105974.

    26. [26]

      WANG D L, YAN L F, MA X B, et al.Ultrasound promotes enzymatic reactions by acting on different targets:Enzymes, substrates and enzymatic reaction systems[J].International Journal of Biological Macromolecules, 2018, 119:453-461.

    27. [27]

      WAGHMARE R.Cold plasma technology for fruit based beverages:A review[J].Trends in Food Science & Technology, 2021, 114:60-69.

    28. [28]

      黄明明, 乔维维, 章建浩, 等.低温等离子体冷杀菌对生鲜牛肉主要腐败菌及生物胺抑制效应研究[J].食品科学技术学报, 2018, 36(4):17-23.

    29. [29]

      TAPPI S, RAGNI L, TYLEWICZ U, et al.Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment[J].Innovative Food Science and Emerging Technologies, 2019, 53:56-62.

    30. [30]

      KANG J H, ROH S H, MIN S C.Inactivation of potato polyphenol oxidase using microwave cold plasma treatment[J].Journal of Food Science, 2019, 84(5):1122-1128.

    31. [31]

      BUßLER S, EHLBECK J, SCHLVTER O K.Pre-drying treatment of plant related tissues using plasma processed air:Impact on enzyme activity and quality attributes of cut apple and potato[J].Innovative Food Science and Emerging Technologies, 2017, 40:78-86.

    32. [32]

      MANZOOR M F, HUSSAIN A, GOKSEN G, et al.Probing the impact of sustainable emerging sonication and DBD plasma technologies on the quality of wheat sprouts juice[J].Ultrasonics Sonochemistry, 2023, 92:106257.

    33. [33]

      ZHANG Y, ZHANG J, ZHANG Y, et al.Effects of in-package atmospheric cold plasma treatment on the qualitative, metabolic and microbial stability of fresh-cut pears[J].Journal of the Science of Food and Agriculture, 2021, 101:4473-4480.

    34. [34]

      XU L, GARNER A L, TAO B, et al.Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma[J].Food and Bioprocess Technology, 2017, 10(10):1778-1791.

    35. [35]

      PIPLIYA S, KUMARR S, SRIVASTAV P P.Inactivation kinetics of polyphenol oxidase and peroxidase in pineapple juice by dielectric barrier discharge plasma technology[J].Innovative Food Science and Emerging Technologies, 2022, 80:103081.

    36. [36]

      GU Y X, SHI W Q, LIU R, et al.Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas[J].Innovative Food Science and Emerging Technologies, 2021, 69:102649.

    37. [37]

      杨延音, 杨治国, 胡世国, 等.水飞蓟素在皮肤科的功效及其在化妆品中的应用进展[J].日用化学工业, 2019, 49(4):259-263.

    38. [38]

      LI L, LI C B, SUN J, et al.Synergistic effects of ultraviolet light irradiation and high-oxygen modified atmosphere packaging on physiological quality, microbial growth and lignification metabolism of fresh-cut carrots[J].Postharvest Biology and Technology, 2021, 173:111365.

    39. [39]

      周成敏, 叶秀萍, 王炳华, 等.UV-C辐照处理对冷藏鲜切黄甜竹笋品质的影响[J].食品研究与开发, 2018, 39(16):178-184.

    40. [40]

      YANNAM S K, PATRAS A, PENDYALA B, et al.Effect of UV-C irradiation on the inactivation kinetics of oxidative enzymes, essential amino acids and sensory properties of coconut water[J].Journal of Food Science and Technology, 2020, 57(10):3564-3572.

    41. [41]

      ALI N, POPOVI V, KOUTCHMA T, et al.Effect of thermal, high hydrostatic pressure, and ultraviolet-C processing on the microbial inactivation, vitamins, chlorophyll, antioxidants, enzyme activity, and color of wheatgrass juice[J].Journal of Food Process Engineering, 2020, 43(1):e13036.

    42. [42]

      DASSAMIOUR S, BOUJOURAF O, SRAOUI L, et al.Effect of postharvest UV-C radiation on nutritional quality, oxidation and enzymatic browning of stored mature date[J].Applied Sciences, 2022, 12(10):4947.

    43. [43]

      HONG X Y, LUO X Q, WANG L H, et al.New insights into the inhibition of hesperetin on polyphenol oxidase:Inhibitory kinetics, binding characteristics, conformational change and computational simulation[J].Foods, 2023, 12(4):905.

    44. [44]

      CACCIARI R D, REYNOSO A, SOSA S, et al.Effect of UVB solar irradiation on laccase enzyme:Evaluation of the photooxidation process and its impact over the enzymatic activity for pollutants bioremediation[J].Amino Acids, 2020, 52(6/7):925-939.

    45. [45]

      SAKIROGLU H, BIRDAL C, BASLAR M, et al.Inactivation kinetics of polyphenol oxidase in an aqueous model system under stand-alone and combined ultrasound and ultraviolet treatments[J].International Journal of Food Properties, 2016, 19(7):1535-1543.

    46. [46]

      SAXENA J, MAKROO H A, SRIVASTAVA B.Effect of ohmic heating on polyphenol oxidase (PPO) inactivation and color change in sugarcane juice[J].Journal of Food Process Engineering, 2017, 40(3):e12485.

    47. [47]

      MANNOZZI C, ROMPOONPOL K, FAUSTER T, et al.Influence of pulsed electric field and ohmic heating pretreatments on enzyme and antioxidant activity of fruit and vegetable juices[J].Foods, 2019, 8(7):247.

    48. [48]

      SÁNCHEZ-VEGA R, RODRÍGUEZ-ROQUE M J, ELEZ-MARTÍNEZ P, et al.Impact of critical high-intensity pulsed electric field processing parameters on oxidative enzymes and color of broccoli juice[J].Journal of Food Processing and Preservation, 2020, 44(3):e14362.

    49. [49]

      TIMMERMANS R A H, ROLAND W S U, VAN KEKEM K, et al.Effect of pasteurization by moderate intensity pulsed electric fields (PEF) treatment compared to thermal treatment on quality attributes of fresh orange juice[J].Foods, 2022, 11(21):3360.

    50. [50]

      HUANG W S, FENG Z S, AILA R, et al.Effect of pulsed electric fields (PEF) on physico-chemical properties, β-carotene and antioxidant activity of air-dried apricots[J].Food Chemistry, 2019, 291:253-262.

    51. [51]

      田美玲.高压脉冲电场(PEF)激活α-淀粉酶/葡萄糖淀粉酶/果胶酶的比较研究[D].重庆:西南大学, 2016.

    52. [52]

      YAPI J C, EKISSI G S E, YA K C, et al.Inactivation kinetics and thermodynamics parameters of polyphenol oxidase and peroxidase activities in an extract from of violet eggplant (Solanum melongena L.)[J].European Journal of Nutrition & Food Safety, 2021, 13(3):83-92.

Article Metrics

Article views(3867) PDF downloads(37) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return