JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

低温长时间热加工对海参体壁蛋白质消化吸收特性的影响

楚鹏飞 倪众 卢晨曦 杨涵颖 于曼曼 刘玉欣

楚鹏飞, 倪众, 卢晨曦, 等. 低温长时间热加工对海参体壁蛋白质消化吸收特性的影响[J]. 轻工学报, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005
引用本文: 楚鹏飞, 倪众, 卢晨曦, 等. 低温长时间热加工对海参体壁蛋白质消化吸收特性的影响[J]. 轻工学报, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005
CHU Pengfei, NI Zhong, LU Chenxi, et al. Effect of low-temperature and long-time heat processing on digestion and absorption properties of sea cucumber body wall protein[J]. Journal of Light Industry, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005
Citation: CHU Pengfei, NI Zhong, LU Chenxi, et al. Effect of low-temperature and long-time heat processing on digestion and absorption properties of sea cucumber body wall protein[J]. Journal of Light Industry, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005

低温长时间热加工对海参体壁蛋白质消化吸收特性的影响

    作者简介: 楚鹏飞(1995-),男,河南省驻马店市人,大连工业大学硕士研究生,主要研究方向为水产品加工过程中品质变化。E-mail:3458003231@qq.com;
  • 基金项目: 国家自然科学基金项目(31901615);大连市高层次人才创新支持计划青年科技之星项目(2021RQ087)

  • 中图分类号: TS254.4

Effect of low-temperature and long-time heat processing on digestion and absorption properties of sea cucumber body wall protein

  • Received Date: 2023-02-28
    Accepted Date: 2023-04-30

    CLC number: TS254.4

  • 摘要: 以新鲜海参为原料,于低温(60℃和80℃)条件下进行不同时间(0 h、1 h、3 h、6 h、12 h、24 h和48 h)的热加工,结合体外模拟消化实验和大鼠翻转肠囊模型,对海参体壁蛋白质变化情况(氧化规律、聚集程度、表面疏水性等)进行研究。结果表明:在整个热加工过程中,海参体壁蛋白质的羰基含量逐渐增加,游离巯基含量逐渐减少,蛋白质氧化程度呈时序性加剧;伴随热加工程度的加剧(热加工不足—适度—过度),蛋白质聚集程度先降低后升高再降低,表面疏水性先增强后减弱再增强,蛋白质平均粒径先增大后减小;经体外模拟消化实验和大鼠翻转肠囊模型转运后,蛋白质水解程度、体外消化率和多肽的跨膜转运水平均随加工时间的延长先升高后降低再升高。综上,于60℃条件下热加工3 h时,海参体壁蛋白质的体外消化率最高且吸收特性较好;于80℃条件下加工超过6 h时,有利于提高海参体壁蛋白质的消化吸收特性。
    1. [1]

      李岩.低温加热过程中海参体壁胶原组织结构变化的研究[D].大连:大连工业大学, 2016.

    2. [2]

      农业部渔业局.中国渔业统计年鉴[M].北京:中国农业出版社, 2022.

    3. [3]

      朱蓓薇.海珍品加工理论与技术的研究[M].北京:科学出版社, 2010.

    4. [4]

      LIU Z Q, ZHOU D Y, LIU Y X, et al.Inhibitory effect of natural metal ion chelators on the autolysis of sea cucumber (Stichopus japonicus) and its mechanism[J].Food Research International, 2020, 133:109205.

    5. [5]

      YU X L, WEI S B, ZHAO M Y, et al.Effect of heat-treatment times on the microstructure and water absorption properties of sea cucumber[J].International Journal of Food Science and Technology, 2022, 58(2):701-711.

    6. [6]

      ZHANG M, LIU Y X, WU Z X, et al.Analysis of texture properties and water-soluble fraction proteome of sea cucumber body wall with different boiling heating treatment[J].Food Chemistry, 2022, 409:13533.

    7. [7]

      BHAT Z F, MORTON J D, MASON S L, et al.Cooking does not impair the impact of pulsed electric field on the protein digestion of venison (Cervus elaphus) during in vitro gastrointestinal digestion[J].International Journal of Food Science and Technology, 2021, 56(6):3026-3033.

    8. [8]

      温斯颖.不同种类动物肌肉蛋白质消化产物比较研究[D].南京:南京农业大学, 2015.

    9. [9]

      BHAT Z F, MORTON J D, BEKHIT A E A, et al.Thermal processing implications on the digestibility of meat, fish and seafood proteins[J].Comprehensive Reviews in Food Science and Food Safety, 2021, 20(5):4511-4548.

    10. [10]

      FAN X R, MA Y S, LI M, et al.Thermal treatments and their influence on physicochemical properties of sea cucumbers:A comprehensive review[J].International Journal of Food Science and Technology, 2022, 57(9):5790-5800.

    11. [11]

      葛小通, 王红丽, 尹明雨, 等.冷冻即食海参质构特性指标的相关性研究[J].中国食品学报, 2023, 23(1):326-334.

    12. [12]

      HE B Y, FENG D D, JIANG D, et al.Studies on quality and physicochemical properties of sea cucumber Stichopus japonicus during low temperature treatment[J].Journal of Chinese Institute of Food Science and Technology, 2019, 19(6):134-140.

    13. [13]

      BECKER A, BOULAABA A, PINGEN S, et al.Low temperature cooking of pork meat-physicochemical and sensory aspects[J].Meat Science, 2016, 118:82-88.

    14. [14]

      DOMINGUEZ-HEMANDEZ E, SALASEVICIENCE A, ERTBJERG P, et al.Low-temperature long-time cooking of meat:Eating quality and underlying mechanisms[J].Meat Science, 2018, 143:104-113.

    15. [15]

      XU Y, FAN H F, ZHAO D L, et al.Optimization of extraction method for water-soluble protein determination by coomassie bright blue method[J].Soybean Science, 2022, 41(2):196-202.

    16. [16]

      LIU X X, CHEN Y, CHEN X H, et al.Effect of ginger extract on the oxidation of myofibrillar protein in squid[J].Journal of Chinese Institute of Food Science and Technology, 2021, 21(9):225-232.

    17. [17]

      许英一, 刘迪, 林巍, 等.热处理改性燕麦蛋白部分性质与表面疏水性的关系[J].食品工业, 2021, 42(8):176-179.

    18. [18]

      YU M M, FAN Y C, LIU Y X, et al.Effects of antioxidants of bamboo leaves on protein digestion and transport of cooked abalone muscles[J].Food & Function, 2022, 13(4):1785-1796.

    19. [19]

      BHAT Z F, MORTON J D, ZHANG X, et al.Sous-vide cooking improves the quality and in-vitro digestibility of semitendinosus from culled dairy cows[J].Food Research International, 2020, 127:108708.

    20. [20]

      DUQUE-ESTRADA P, BERTON-CARABIN C C, NIEUWKOOP M, et al.Protein oxidation and in vitro gastric digestion of processed soy-based matrices[J].Journal of Agricultural & Food Chemistry, 2019, 67(34):9591-9600.

    21. [21]

      张旭东, 斯琴其木格, 曾睿, 等.不同热处理条件下羊血浆蛋白体外模拟消化研究[J].食品安全质量检测学报, 2022, 13(18):6049-6056.

    22. [22]

      大连工业大学动物实验伦理委员会.SCXK(Liao)2015-0001[S].大连:大连工业大学, 2015.

    23. [23]

      阴法文.酪醇脂肪酸酯对贻贝油的抗氧化作用及其吸收代谢机制[D].大连:大连工业大学, 2018.

    24. [24]

      JIANG D D, SHEN S K, YU W T, et al.Insights into peptide profiling of sturgeon myofibrillar proteins with low temperature vacuum heating[J].Journal of the Science of Food and Agriculture, 2023, 103(6):2858-2866.

    25. [25]

      RIBEIRO A R, BARBAGLIO A, BENEDETTO C D, et al.New insights into mutable collagenous tissue:Correlations between the microstructure and mechanical state of a sea-urchin ligament[J].PLoS One, 2017, 6(9):e24822.

    26. [26]

      胡吕霖.烹饪对鲟鱼蛋白质氧化及消化性的影响研究[D].杭州:浙江大学, 2018.

    27. [27]

      韩宗元, 邵俊花, 潘燕墨, 等.蛋白质适度加工:热聚集与凝胶品质阐述以及过度聚集的调控对策[J].食品科学, 2023, 44(9):177-184.

    28. [28]

      王博, 伊东, 谢梦颖, 等.糖基化大豆分离蛋白对肌原纤维蛋白功能特性的影响[J].食品科学, 2017, 38(7):63-69.

    29. [29]

      KAUR L, MAU DENS E, HAISMAN D R, et al.Microstructure and protein digestibility of beef:The effect of cooking conditions as used in stews and curries[J].LWT-Food Science and Technology, 2014, 55(2):612-620.

    30. [30]

      DU X J, SUN Y Y, PAN D D, et al.Change of the structure and the digestibility of myofibrillar proteins in Nanjing dry-cured duck during processing[J].Journal of the Science of Food and Agriculture, 2018, 98(8):3140-3147.

    31. [31]

      WANG Z Y, WU Z X, ZHAO G H, et al.Effect of air frying and baking on physicochemical properties and digestive properties of scallop (Patinopecten yessoensis) adductor muscle[J].Food Bioscience, 2023, 52:10240.

    32. [32]

      ZHOU C Y, PAN D D, SUN Y Y, et al.The effect of cooking temperature on the aggregation and digestion rate of myofibrillar proteins in Jinhua ham[J].Journal of the Science of Food and Agriculture, 2018, 98(9):3563-3570.

    33. [33]

      PHILO J S, ARAKAWA T.Mechanisms of protein aggregation[J].Current Pharmaceutical Biotechnology, 2009, 10(4):348-351.

    34. [34]

      LIU F J, DONG X P, SHEN S K, et al.Changes in the digestion properties and protein conformation of sturgeon myofibrillar protein treated by low temperature vacuum heating during in vitro digestion[J].Food & Function, 2021, 12(15):6981-6991.

    35. [35]

      BORNHORST G M, SINGH R P.Gastric digestion in vivo and in vitro:How the structural aspects of food influence the digestion process[J].Annual Review of Food Science & Technology, 2014, 5(1):111-132.

    36. [36]

      丁龙.蛋清肽结构鉴定与完整吸收的构效关系研究[D].长春:吉林大学, 2018.

    37. [37]

      SOLADOYE O P, JUAREZ M L, AALHUS J L, et al.Protein oxidation in processed meat:Mechanisms and potential implications on human health[J].Comprehensive Reviews in Food Science and Food Safety, 2015, 14(2):106-122.

    1. [1]

      王晓吴洲王宏伟王榕陈浩然 . 基于深度学习和蛋白质语言模型的抗菌肽预测模型研究. 轻工学报, 2024, 39(2): 12-18. doi: 10.12187/2024.02.002

    2. [2]

      杜秋唐辉孙军华谭益升吴梓仟蒋立文刘洋 . 即食豆干加工过程中的细菌污染溯源. 轻工学报, 2024, 39(2): 28-35. doi: 10.12187/2024.02.004

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  3136
  • 引证文献数: 0
文章相关
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-04-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
楚鹏飞, 倪众, 卢晨曦, 等. 低温长时间热加工对海参体壁蛋白质消化吸收特性的影响[J]. 轻工学报, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005
引用本文: 楚鹏飞, 倪众, 卢晨曦, 等. 低温长时间热加工对海参体壁蛋白质消化吸收特性的影响[J]. 轻工学报, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005
CHU Pengfei, NI Zhong, LU Chenxi, et al. Effect of low-temperature and long-time heat processing on digestion and absorption properties of sea cucumber body wall protein[J]. Journal of Light Industry, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005
Citation: CHU Pengfei, NI Zhong, LU Chenxi, et al. Effect of low-temperature and long-time heat processing on digestion and absorption properties of sea cucumber body wall protein[J]. Journal of Light Industry, 2023, 38(4): 37-45. doi: 10.12187/2023.04.005

低温长时间热加工对海参体壁蛋白质消化吸收特性的影响

    作者简介:楚鹏飞(1995-),男,河南省驻马店市人,大连工业大学硕士研究生,主要研究方向为水产品加工过程中品质变化。E-mail:3458003231@qq.com
  • 1. 大连工业大学 食品学院/国家海洋食品工程技术研究中心, 辽宁 大连 116034;
  • 2. 安徽农业大学 茶与食品科技学院, 安徽 合肥 230036
基金项目:  国家自然科学基金项目(31901615);大连市高层次人才创新支持计划青年科技之星项目(2021RQ087)

摘要: 以新鲜海参为原料,于低温(60℃和80℃)条件下进行不同时间(0 h、1 h、3 h、6 h、12 h、24 h和48 h)的热加工,结合体外模拟消化实验和大鼠翻转肠囊模型,对海参体壁蛋白质变化情况(氧化规律、聚集程度、表面疏水性等)进行研究。结果表明:在整个热加工过程中,海参体壁蛋白质的羰基含量逐渐增加,游离巯基含量逐渐减少,蛋白质氧化程度呈时序性加剧;伴随热加工程度的加剧(热加工不足—适度—过度),蛋白质聚集程度先降低后升高再降低,表面疏水性先增强后减弱再增强,蛋白质平均粒径先增大后减小;经体外模拟消化实验和大鼠翻转肠囊模型转运后,蛋白质水解程度、体外消化率和多肽的跨膜转运水平均随加工时间的延长先升高后降低再升高。综上,于60℃条件下热加工3 h时,海参体壁蛋白质的体外消化率最高且吸收特性较好;于80℃条件下加工超过6 h时,有利于提高海参体壁蛋白质的消化吸收特性。

English Abstract

参考文献 (37) 相关文章 (2)

目录

/

返回文章