JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 6
December 2023
Article Contents
ZHAO Hanqing, WANG Bin, CHEN Yao, et al. Research on geographical origin traceability of Coix seed based on a modified random forest algorithm[J]. Journal of Light Industry, 2023, 38(6): 70-77. doi: 10.12187/2023.06.009
Citation: ZHAO Hanqing, WANG Bin, CHEN Yao, et al. Research on geographical origin traceability of Coix seed based on a modified random forest algorithm[J]. Journal of Light Industry, 2023, 38(6): 70-77. doi: 10.12187/2023.06.009 shu

Research on geographical origin traceability of Coix seed based on a modified random forest algorithm

  • Received Date: 2023-05-04
    Accepted Date: 2023-06-12
  • Coix seeds from 9 different origins were taken as the research object. An attempt was made to achieve geographical origin traceability of Coix seeds through the combination of excitation-emission matrix (EEM) fluorescence spectroscopy with improved random forest algorithm. The improvements to the random forest algorithm mainly include two aspects, firstly, principal component analysis (PCA) was adopted to reduce the dimension of EEM fluorescent data; secondly, a grid search method was used to identify the optimal number of principal components(PCs) to retain and the hyperparameters of the discriminant model during the PCA dimension reduction process. The results showed that an improved random forest model, incorporating standard deviation normalization and PCA dimension reduction modules, based on Coix seeds EEM fluorescence spectroscopy data, accurately predicted the geographical origin of Coix seed samples from 9 different areas. The optimal model was constructed by combining 100 decision trees with a maximum depth of 3 and a minimum sample size of 1 at the leaf node, using 16 principal components (PCs). This model achieved 100% prediction accuracy for both the validation and test sets, which consisted of a total of 108 samples, outperforming the PLS-DA model constructed by the partial least squares method (96% prediction accuracy).
  • 加载中
    1. [1]

      刘星, 王正武.薏仁的化学成分及其应用研究[J].食品与药品, 2014, 16(2):129-133.

    2. [2]

      陆雅丽, 王明力, 闫岩.薏苡仁综合开发利用[J].中国食物与营养, 2013, 19(4):64-66.

    3. [3]

      LIN L Y, LIAO Y L, CHEN M H, et al.Molecular action mechanism of Coixol from soft-shelled adlay on tyrosinase:The future of cosmetics[J].Molecules, 2022, 27(14):4626.

    4. [4]

      ZENG Y W, YANG J Z, CHEN J, et al.Actional mechanisms of active ingredients in functional food adlay for human health[J].Molecules, 2022, 27(15):4808.

    5. [5]

      CHIANG Y F, CHUNG C P, LIN J H, et al.Adlay seed (Coix lacryma-jobi L.var.ma-yuen Stapf.) ethanolic extract fractions and subfractions induce cell cycle arrest and apoptosis in human breast and cervical cancer cell lines[J].Molecules, 2022, 27(13):3984.

    6. [6]

      ZHANG W, JIA X Z, XU Y H, et al.Effects of Coix seed extract, bifidobacterium BPL1, and their combination on the glycolipid metabolism in obese mice[J].Frontiers in Nutrition, 2022, 9(39):423-423.

    7. [7]

      ZHOU Q Y, YU R Y, LIU T L, et al.Coix seed diet ameliorates immune function disorders in experimental colitis mice[J].Nutrients, 2022, 14(1):123.

    8. [8]

      赵杨景, 杨峻山, 张聿梅, 等.不同产地薏苡的经济性状和质量的比较研究[J].中国中药杂志, 2002, 27(9):694-696.

    9. [9]

      LIU X, MAO D Z, WANG Z W, et al.Rapid identification of Coix seed varieties by near infrared spectroscopy[J].Spectroscopy and Spectral Analysis, 2014, 34(5):1259-1263.

    10. [10]

      刘星, 范楷, 杨俊花, 等.基于主要营养成分含量的大小颗粒薏仁米判别[J].食品与机械, 2019, 35(2):77-81
      , 133.

    11. [11]

      郑利, 陈丹, 范世明, 等.不同产地薏苡仁的鉴别及含量测定[J].福建中医药大学学报, 2012, 22(5):52-54.

    12. [12]

      TANG W W, WANG J C, LI W, et al.Changes in triacylglycerols content and quality control implications of Coix seeds during processing and storage[J].Foods, 2022, 11(16):2462.

    13. [13]

      CHANG Y Y, WU H L, WANG T, et al.Geographical origin traceability of traditional Chinese medicine Atractylodes macrocephala Koidz.by using multi-way fluorescence fingerprint and chemometric methods[J].Spectrochimica Acta Part A(Molecular and Biomolecular Spectroscopy), 2022, 269:120737.

    14. [14]

      LI M X, LI Y Z, CHEN Y, et al.Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in Atractylodes macrocephala Koidz[J].Microchemical Journal, 2021, 171:106884.

    15. [15]

      LONG W J, WU H L, WANG T, et al.Fast identification of the geographical origin of Gastrodia elata using excitation-emission matrix fluorescence and chemometric methods[J].Spectrochimica Acta Part A(Molecular and Biomolecular Spectroscopy), 2021, 258:119798.

    16. [16]

      HU L Q, MA S, YIN C L.Discrimination of geographical origin and detection of adulteration of kudzu root by fluorescence spectroscopy coupled with multi-way pattern recognition[J].Spectrochimica Acta Part A(Molecular and Biomolecular Spectroscopy), 2018, 193:87-94.

    17. [17]

      MATTHIAS S, ROSIE Y Z.The random forest algorithm for statistical learning[J].The Stata Journal(Promoting Communications on Statistics and Stata), 2020, 20(1):3-29.

    18. [18]

      LI S F, JIA M Z, DONG D M.Fast measurement of sugar in fruits using near infrared spectroscopy combined with random forest algorithm[J].Spectroscopy And Spectral Analysis, 2018, 38(6):1766-1771.

    19. [19]

      FELIPE L G, GUSTAVO R F, HENRIQUE F D A, et al.Principal component analysis:A natural approach to data exploration[J].ACM Computing Surveys, 2021.54(4):1-34.

    20. [20]

      成巍, 侯恩广, 李珂, 等.基于PCA的中药黄芩药效评价方法研究[J].山东科学, 2012, 25(1):47-50.

Article Metrics

Article views(1506) PDF downloads(26) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return