JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 38 Issue 6
December 2023
Article Contents
LI Shanlian, AN Jiamin, LIU Chaoxian, et al. Multi block process monitoring method of drum dryer based on autoencoder and PCA[J]. Journal of Light Industry, 2023, 38(6): 110-117. doi: 10.12187/2023.06.014
Citation: LI Shanlian, AN Jiamin, LIU Chaoxian, et al. Multi block process monitoring method of drum dryer based on autoencoder and PCA[J]. Journal of Light Industry, 2023, 38(6): 110-117. doi: 10.12187/2023.06.014 shu

Multi block process monitoring method of drum dryer based on autoencoder and PCA

  • Received Date: 2023-03-15
    Accepted Date: 2023-08-19
  • The process of drum drying silk has complex characteristics of multivariability, strong coupling, and nonlinearity. Traditional Principal Component Analysis (PCA) method lacks strong nonlinear ability, and global modeling method is difficult to achieve accurate fault detection of the process.Therefore, this paper proposed a novel multi-block approach by integrating Autoencoder (AE) for feature extraction and PCA model.Initially, in order to capture local features, the process variables were divided into blocks according to the drying process principle of tobacco leaf.Secondly, autoencoder was used to extract the nonlinear features of each sub-block.Then, the corresponding PCA models are established for each sub-block, respectively.Lastly, the monitoring results of multiple subspaces were fused for decision-making by Bayesian inference. Two actual leaf silk drying cases were used for verification, and the results showed that the alarm rates of this method were as high as 91.67% and 98.21%. Compared to traditional PCA and AE-PCA detection methods, this algorithm could accurately reveal and characterize the overall operating status and local feature information of the drying process, improve the accuracy of anomaly detection in the drum leaf silk drying production process and achieve accurate alarm for quality anomalies, to ensure stable production of the drum leaf silk drying process.
  • 加载中
    1. [1]

      李永生, 何文苗, 李石头, 等.烟气水分、感官舒适性与烘丝工艺参数的关系研究[J].郑州轻工业学院学报(自然科学版), 2014, 29(6):13-16.

    2. [2]

      黄胜, 李建辉, 张永川.长沙卷烟厂SPC系统的应用实践[J].中国烟草学报, 2008, 14(S1):14-17.

    3. [3]

      李文泉, 赵文田, 李文斌.统计过程控制技术SPC在烟草制丝生产中的应用[J].机械工程与自动化, 2009(5):116-118.

    4. [4]

      张敏, 童亿刚, 戴志渊, 等.SPC技术在制丝质量管理中的初步应用[J].烟草科技, 2004(9):10-11.

    5. [5]

      张雷, 李金学, 堵劲松, 等.基于DGRU网络的烘丝机筒壁温度动态预测[J].轻工学报, 2022, 37(6):85-91
      , 100.

    6. [6]

      商庆杰, 潘宏菽, 张力江, 等.实施统计过程控制(SPC)中常见问题的探讨[J].现代制造技术与装备, 2016(2):126-128, 130.

    7. [7]

      杨锦忠, 宋希云.多元统计分析及其在烟草学中的应用[J].中国烟草学报, 2014, 20(5):134-138.

    8. [8]

      马洁, 党爱民, 李刚, 等.基于MSPM的故障诊断技术研究现状与展望[J].华侨大学学报(自然科学版), 2012, 33(6):601-607.

    9. [9]

      王伟, 赵春晖.基于PCA的卷烟制丝过程监测与故障诊断[J].控制工程, 2017, 24(12):2435-2442.

    10. [10]

      WANG L, DENG X G.Multi-block principal component analysis based on variable weight information and its application to multivariate process monitoring [J].Canadian Journal of Chemical Engineering, 2018, 96(5):1127-1141.

    11. [11]

      王伟, 张利宏, 黎明星, 等.卷烟制叶丝段批次过程的多阶段分布式监测与异常诊断[J].烟草科技, 2018, 51(2):69-76.

    12. [12]

      鲍宇, 程硕, 王靖涛.基于深度学习的化工过程故障检测与诊断研究综述[J].化学工业与工程, 2022, 39(2):9-22.

    13. [13]

      LIU C L, WANG Y L, WANG K, et al.Deep learning with nonlocal and local structure preserving stacked autoencoder for soft sensor in industrial processes[J].Engineering Applications of Artificial Intelligence, 2021, 104:104341.

    14. [14]

      WEHRENS R.Chemometrics with R:Multivariate data analysis in the natural sciences and life sciences[D].[S.l.:s.n.], 2011:43-66.

    15. [15]

      ZHANG J X, CHEN M Y, HONG X.Nonlinear process monitoring using a mixture of probabilistic PCA with clusterings [J].Neurocomputing, 2021, 458:319-326.

    16. [16]

      DONG J, SUN R Q, PENG K X, et al.Quality monitoring and root cause diagnosis for industrial processes based on Lasso-SAE-CCA[J].IEEE Access, 2019, 7:90230-90242.

    17. [17]

      GU B B, XIONG W L.Multi-mode process monitoring based on multi-block information extraction PCA method with local neighbourhood standardization[J].International Journal of Modelling Identification and Control, 2019, 32(3/4):264-273.

    18. [18]

      郑静, 熊伟丽.基于互信息的多块k近邻故障监测及诊断[J].智能系统学报, 2021, 16(4):717-728.

    19. [19]

      童楚东, 蓝艇, 史旭华.基于互信息的分散式动态PCA故障检测方法[J].化工学报, 2016, 67(10):4317-4323.

Article Metrics

Article views(978) PDF downloads(34) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return