超声微波协同提升贡柑片热风干燥效率的研究
Ultrasonic-microwave synergistic processing improvement of hot air drying efficiency for citrus Gonggan slices
-
摘要: 借助动力学、热力学等方法,研究不同热风干燥温度下贡柑片在干燥过程中的干燥规律、动力学模型、水分迁移、热力学参数等,解析超声微波协同预处理对热风干燥贡柑片干燥效率的影响。结果表明:贡柑片的干燥过程遵循Two term exponential模型,干燥速率与干燥温度有关,且当干燥温度为80 ℃时,干燥速率最快;超声微波协同预处理可有效缩短贡柑片的干燥时间(缩短了0.5~1.5 h),并显著降低其水分扩散的活化能(降低了1.620 kJ/mol);同一热风干燥温度下,超声微波协同预处理组的ΔH≠、ΔS≠和ΔG≠均低于对照组;超声微波协同预处理可提高贡柑片的水分扩散有效系数(4.333×10-7~8.967×10-7),使其表面形成更多孔道。因此,超声微波协同预处理可有效提高贡柑片的热风干燥效率。Abstract: Using methods such as dynamics and thermodynamics, the drying laws, dynamic models, moisture migration, thermodynamic parameters, etc. of citrus Gonggan slices during hot air drying at different temperatures were studied. The effects of ultrasound-microwave synergistic pretreatment on the drying efficiency of citrus Gonggan slices during hot air drying were also analyzed. The results showed that the drying process followed the Two term exponential model and the drying rate was co-related with the drying temperature. The drying rate was the fastest when the drying temperature was 80 ℃. The ultrasound-microwave synergistic pretreatment effectively reduced the drying time by 0.5 hours to 1.5 hours. The activation energy (Ea) of moisture diffusion was significantly lowered by 1.620 kJ/mol. At a given hot air drying temperature, the ΔH≠, ΔS≠, and ΔG≠ of the ultrasound-microwave synergistic pretreatment group were all lower than the control group. The ultrasound-microwave synergistic pretreatment could increase the effective coefficient of water diffusion of citrus Gonggan slices (4.333×10-7 to 8.967×10-7), resulting in more pores on their surfaces. Therefore, the ultrasound-microwave synergistic pretreatment could effectively improve the hot air drying efficiency of citrus Gonggan slices.>
-
-
[1]
EL-MESERY H S,FARAG H A,KAMEL R M,et al.Convective hot air drying of grapes:Drying kinetics,mathematical modeling,energy,thermal analysis[J].Journal of Thermal Analysis and Calorimetry,2023,148(14):6893-6908.
-
[2]
DE ARAUJO M E V,BARBOSA E G,LOPES R P,et al.Infrared drying of pear slices:Drying kinetics,energy,and exergy analysis[J].Journal of Food Process Engineering,2021,44(12):e13915.
-
[3]
孟克迪,张国治,王赵改,等.基于GC-IMS联用技术分析不同干燥方式对香椿挥发性成分的影响[J].轻工学报,2023,38(3):25-34.
-
[4]
ZHANG L H,LIAO L,QIAO Y,et al.Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying[J].Food Chemistry,2020,303:125386.
-
[5]
WANG L,WEN H C,YANG N W,et al.Effect of vacuum freeze drying and hot air drying on dried mulberry fruit quality[J].PLoS One,2023,18(6):e0283303.
-
[6]
PROSAPIO V,LOPEZ-QUIROGA E.Freeze-drying technology in foods[J].Foods,2020,9(7):920.
-
[7]
肖更生,林可为,沈乔眉,等.岭南特色水果干燥加工技术研究进展[J].轻工学报,2023,38(4):1-10.
-
[8]
MENG Z F,CUI X N,LIU Y,et al.Effect of electrohydrodynamics on hot air drying characteristics of fruits and vegetables[J].Sustainable Energy Technologies and Assessments,2022,53:102716.
-
[9]
谭宏渊,凌玉钊,黄丽琪,等.不同预处理对热风干燥山药片品质特性及微观结构的影响[J].食品工业科技,2023,44(20):43-52.
-
[10]
苑丽婧,何秀,林蓉,等.超声预处理对猕猴桃水分状态及热风干燥特性的影响[J].农业工程学报,2021,37(13):263-272.
-
[11]
KROEHNKE J,SZADZISKA J,STASIAK M,et al.Ultrasound-and microwave-assisted convective drying of carrots-Process kinetics and product’s quality analysis[J].Ultrasonics Sonochemistry,2018,48:249-258.
-
[12]
SZADZIŃSKA J,KOWALSKI S,STASIAK M.Microwave and ultrasound enhancement of convective drying of strawberries:Experimental and modeling efficiency[J].International Journal of Heat and Mass Transfer,2016,103:1065-1074.
-
[13]
REDONDO-CUENCA A,GARCÍA-ALONSO A,RODRÍ- GUEZ-ARCOS R,et al.Nutritional composition of green Asparagus (Asparagus officinalis L.),edible part and by-products,and assessment of their effect on the growth of human gut-associated bacteria[J].Food Research International,2023,163:112284.
-
[14]
胡益波,毛国兴,陈霖红,等.德庆贡柑共产物的营养组成研究[J].农产品加工,2022(24):47-50,54.
-
[15]
TARAFDAR A,SHAHI N C,SINGH A.Freeze-drying behaviour prediction of button mushrooms using artificial neural network and comparison with semi-empirical models[J].Neural Computing and Applications,2019,31(11):7257-7268.
-
[16]
MALAN A,KAMBOJ V,SHARMA A K,et al.Mathematical modelling of solar drying of a novel composite desiccant[J].International Journal of Ambient Energy,2019,40(1):28-34.
-
[17]
颜伟强.颗粒状切割块茎类蔬菜微波喷动均匀干燥特性及模型研究[D].无锡:江南大学,2011.
-
[18]
王定仙,孙慧英,杜海燕,等.微波干燥马铃薯预处理工艺研究[J].农产品加工,2021(22):17-20.
-
[19]
赵学伟,魏益民,张波.热重分析法研究小米挤压膨化产品的干燥动力学[J].郑州轻工业学院学报(自然科学版),2011,26(4):17-21
,88. -
[20]
张鑫,任元元,孟资宽,等.马铃薯非油炸挤出方便面热风干燥特性及动力学研究[J].粮油食品科技,2021,29(2):135-142.
-
[21]
楚文靖,盛丹梅,张楠,等.红心火龙果热风干燥动力学模型及品质变化[J].食品科学,2019,40(17):150-155.
-
[22]
VISHKARMA K,SUMAN R,SHARANAGAT V S,et al.Modeling of hot air drying kinetics of Tofu[J].Agricultural Engineering Today,2015,39(3):47-56.
-
[23]
马路凯.植物油中丙二醛、4-羟基-2-己烯醛和4-羟基-2-壬烯醛的热响应机制研究[D].广州:华南理工大学,2019.
-
[24]
卿果,徐剑,缪艳燕,等.枸杞浸膏微波真空干燥特性及干燥动力学模型研究[J].食品工业科技,2023,44(5):222-229.
-
[25]
WANG J,YANG X H,MUJUMDAR A S,et al.Effects of various blanching methods on weight loss,enzymes inactivation,phytochemical contents,antioxidant capacity,ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.)[J].LWT-Food Science and Technology,2017,77:337-347.
-
[26]
PEI Y S,LI Z F,SONG C F,et al.Analysis and modelling of temperature and moisture gradient for ginger slices in hot air drying[J].Journal of Food Engineering,2022,323:111009.
-
[27]
TAN S,MIAO Y W,ZHOU C B,et al.Effects of hot air drying on drying kinetics and anthocyanin degradation of blood-flesh peach[J].Foods,2022,11(11):1596.
-
[28]
SZADZISKA J,KOWALSKI S,STASIAK M.Microwave and ultrasound enhancement of convective drying of strawberries:Experimental and modeling efficiency[J].International Journal of Heat and Mass Transfer,2016,103:1065-1074.
-
[29]
梁秋萍,严学迎.超声辅助热风干燥对芒果干品质的影响[J].中国食品添加剂,2022,33(12):205-210.
-
[30]
FAAL S,TAVAKOLI T,GHOBADIAN B.Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer[J].Journal of Food Science and Technology,2015,52(5):2950-2957.
-
[31]
CHEN Y N,DONG H J,LI J K,et al.Evaluation of a nondestructive NMR and MRI method for monitoring the drying process of Gastrodia elata blume[J].Molecules,2019,24(2):236.
-
[32]
刘鹤,焦俊华,田友,等.马铃薯片热风干燥特性及收缩动力学模型[J].食品工业科技,2022,43(11):58-64.
-
[33]
REZA T M,REZA F,MOHAMADTAGHI G,et al.Thermal antioxidative kinetics of sesamol in triacylglycerols and fatty acid methyl esters of sesame,olive,and canola oils[J].Journal of the American Oil Chemists’ Society,2021,98(8):871-880.
-
[34]
DE OLIVEIRA G Q,DO NASCIMENTO R A,COSTA J F,et al.Drying of banana pseudo-stem fibers:Evaluation of kinetic models,effective diffusivity,thermodynamic properties,and structural characterization[J].Journal of Natural Fibers,2020,19:3654-3667.
-
[35]
王德瑶.橡胶干燥过程的动态模拟[D].哈尔滨:哈尔滨工业大学,2006.
-
[36]
FARHOOSH R,HOSEINI-YAZDI S Z.Evolution of oxidative values during kinetic studies on olive oil oxidation in the rancimat test[J].Journal of the American Oil Chemists’ Society,2014,91(2):281-293.
-
[37]
戚思影.低频超声预处理对脱水香菇品质及风味的影响[D].扬州:扬州大学,2021.
-
[38]
MANTOVANI M S,BELLINI M F,ANGELI J P F,et al.Beta-Glucans in promoting health:Prevention against mutation and cancer[J].Mutation Research,2008,658(3):154-161.
-
[39]
CHEN Z G,GUO X Y,WU T.A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods[J].Ultrasonics Sonochemistry,2016,30:28-34.
-
[1]
计量
- PDF下载量: 36
- 文章访问数: 1814
- 引证文献数: 0