JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

牡蛎壳粉资源化利用研究进展

邱勇 孟志容 林祥志

邱勇, 孟志容, 林祥志. 牡蛎壳粉资源化利用研究进展[J]. 轻工学报, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005
引用本文: 邱勇, 孟志容, 林祥志. 牡蛎壳粉资源化利用研究进展[J]. 轻工学报, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005
QIU Yong, MENG Zhirong and LIN Xiangzhi. Progress of oyster shell powder resource utilization research[J]. Journal of Light Industry, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005
Citation: QIU Yong, MENG Zhirong and LIN Xiangzhi. Progress of oyster shell powder resource utilization research[J]. Journal of Light Industry, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005

牡蛎壳粉资源化利用研究进展

    作者简介: 邱勇(1988—),男,福建省建宁县人,泉州师范学院副教授,博士,主要研究方向为海洋生物资源综合利用。E-mail:qiuyong@qztc.edu.cn;
    通讯作者: 林祥志,lyndon2000@163.com
  • 基金项目: 福建省海洋藻类活性物质制备与功能开发重点实验室开放课题(2022-KF03)
    福建省自然科学基金计划项目(2021J05186)
    泉州市“揭榜挂帅”重大技术攻关项目(2023NZ01)

  • 中图分类号: TS254.9;Q819

Progress of oyster shell powder resource utilization research

    Corresponding author: LIN Xiangzhi, lyndon2000@163.com
  • Received Date: 2023-12-11
    Accepted Date: 2024-03-27
    Available Online: 2024-12-15

    CLC number: TS254.9;Q819

  • 摘要: 基于牡蛎壳所具有的高硬度、强耐腐蚀性和优良韧性等特性,梳理了牡蛎壳粉在环境治理与改良、建筑材料环保替代、可再生能源开发、食品与饲料营养成分保持和补充等方面的应用现状,指出,牡蛎壳粉可作为生物滤料和土壤改良剂,有效治理水体污染、促进土壤修复;可用作砂浆骨料替代品,并可制成生物阻燃剂等,减少建筑材料对自然资源的依赖,增强建筑材料的安全性能和使用性能;可作为一种高效环保催化剂,用于生物柴油、沼气等可再生能源的生产;还可作为钙补充剂、禽类饲料添加剂及抗菌剂,应用于食品与饲料行业,预防营养成分的流失并提高其安全性。尽管牡蛎壳粉的资源化利用展现出广阔的市场潜力,但其商业化进程仍受到加工成本、标准化和质量控制等技术的制约。未来的研究方向应集中在开发更高效的牡蛎壳粉处理技术,提升其在不同应用场景中的性能和价值,并探索其在新能源、生物医药等新兴领域的应用潜力,进一步推动牡蛎相关产业的可持续发展。
    1. [1]

      张刚生,谢先德.贝壳珍珠层微结构及成因理论[J].矿物岩石,2000,20(1):11-16.

    2. [2]

      高宏,周立江,邢向荣,等.柴胡龙骨牡蛎汤加减治疗乳腺癌研究进展[J].陕西中医,2023,44(11):1657-1659.

    3. [3]

      张熙,肖玲,宋春霞.牡蛎壳资源化利用研究进展[J].水产养殖,2023,44(1):14-17.

    4. [4]

      曹敏杰,丁希月,许玲玲,等.牡蛎壳资源利用研究进展[J].集美大学学报(自然科学版),2021,26(5):390-397.

    5. [5]

      赵娟,杨耐德,周亮.牡蛎壳资源开发利用综述[J].安徽农学通报,2015,21(21):79-80.

    6. [6]

      XIA X,LI Y,LI J,et al.Effect of oyster shell filling in artificial reefs on flow field environment and assessing the potential of carbon fixation[J].Journal of Sea Research,2024,202:102537.

    7. [7]

      BARROS M C,BELLO P M,BAO M,et al.From waste to commodity:Transforming shells into high purity calcium carbonate[J].Journal of Cleaner Production,2009,17(3):400-407.

    8. [8]

      LEE C H,LEE D K,ALI M A,et al.Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials[J].Waste Management,2008,28(12):2702-2708.

    9. [9]

      WANG H Y,KUO W T,LIN C C,et al.Study of the material properties of fly ash added to oyster cement mortar[J].Construction and Building Materials,2013,41:532-537.

    10. [10]

      LI J H,ZHUANG S L.Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria:Current state and perspectives[J].European Polymer Journal,2020,138:109984.

    11. [11]

      BARTHELAT F,YIN Z,BUEHLER M J.Structure and mechanics of interfaces in biological materials[J].Nature Reviews Materials,2016,1(4):16007.

    12. [12]

      陈文韬.牡蛎壳组成特性及其综合利用研究[D].福州:福建农林大学,2013.

    13. [13]

      黄丽,陀丽媚,覃颖异,等.牡蛎壳粉对香蕉与火龙果保鲜效果的研究[J].食品安全导刊,2023(8):104-107,111.

    14. [14]

      秦贞苗,李海龙,赖伟勇,等.气流粉碎技术制备牡蛎壳超微粉的工艺研究[J].海南医学,2018,29(11):1551-1553.

    15. [15]

      王亮,张慜,孙金才,等.牡蛎壳超微粉碎工艺及粉体性质[J].无锡轻工大学学报(食品与生物技术),2004,23(1):58-61.

    16. [16]

      赵娟,李远文,杨耐德,等.改性牡蛎壳对废水中磷吸附性能的研究[J].化工新型材料,2014,42(3):154-156.

    17. [17]

      KIM W,SINGH R.Modified oyster waste shells as a value-added sorbent for lead removal from water[J].Bulletin of Environmental Contamination and Toxicology,2022,108(3):518-525.

    18. [18]

      马迎群,曹伟,赵艳民,等.典型平原河网区水体富营养化特征、成因分析及控制对策研究[J].环境科学学报,2022,42(2):174-183.

    19. [19]

      华泽爱.中国海域的赤潮及对策[J].海洋通报,1989,8(1):108-113.

    20. [20]

      HUANG W Y,ZHANG Y M,LI D.Adsorptive removal of phosphate from water using mesoporous materials: A review[J].Journal of Environmental Management,2017,193:470-482.

    21. [21]

      游凯,封磊,范立维,等.磁铁锆改性牡蛎壳对水体磷的控释行为研究[J].环境科学学报,2020,40(7):2486-2495.

    22. [22]

      苏永昌,刘淑集,王茵,等.牡蛎壳粉对水中磷吸附特性的研究[J].福建水产,2011,33(1):32-35.

    23. [23]

      CHEN W T,LIN C W,SHIH P K,et al.Adsorption of phosphate into waste oyster shell:Thermodynamic parameters and reaction kinetics[J].Desalination and Water Treatment,2012,47(1/2/3):86-95.

    24. [24]

      KWON H B,LEE C W,JUN B S,et al.Recycling waste oyster shells for eutrophication control[J].Resources,Conservation and Recycling,2004,41(1):75-82.

    25. [25]

      YIN H J,LIU L,LV M Z,et al.Metal-modified mussel shell for efficient binding of phosphorus in eutrophic waters[J].International Journal of Environmental Research,2020,14(2):135-143.

    26. [26]

      YOU K,YANG W K,SONG P,et al.Lanthanum-modified magnetic oyster shell and its use for enhancing phosphate removal from water[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,633:127897.

    27. [27]

      ZHOU Z,YAN J,WU Z J,et al.Preparation and characterization of abandoned oyster shell-metal materials and their adsorption and mechanism of phosphorus in wastewater[J].Materials Today Sustainability,2023,24:100531.

    28. [28]

      LEE C W,KWON H B,JEON H P,et al.A new recycling material for removing phosphorus from water[J].Journal of Cleaner Production,2009,17(7):683-687.

    29. [29]

      ZHOU Z J,XU Q L,WU Z J,et al.Preparation and characterization of clay-oyster shell composite adsorption material and its application in phosphorus removal from wastewater[J].Sustainable Chemistry and Pharmacy,2023,32:101023.

    30. [30]

      李玉.牡蛎壳生物载体的制备及在生物滤器工艺中的应用[D].泉州:华侨大学,2014.

    31. [31]

      CHAI Y H,PENG R B,JIANG M W,et al.Effects of ammonia nitrogen stress on the blood cell immunity and liver antioxidant function of Sepia pharaonis[J].Aquaculture,2022,546:737417.

    32. [32]

      SCHNEIDER O,SERETI V,EDING E H,et al.Analysis of nutrient flows in integrated intensive aquaculture systems[J].Aquacultural Engineering,2005,32(3/4):379-401.

    33. [33]

      SINHA A K,LIEW H J,DIRICX M,et al.The interactive effects of ammonia exposure,nutritional status and exercise on metabolic and physiological responses in gold fish (Carassius auratus L.)[J].Aquatic Toxicology,2012,109:33-46.

    34. [34]

      YUE F,PAN L Q,XIE P,et al.Immune responses and expression of immune-related genes in swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N stress[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2010,157(3):246-251.

    35. [35]

      FOSS A,K IMSLAND A,FALK-PETERSEN I B,et al.A review of the culture potential of spotted wolffish Anarhichas minor Olafsen[J].Reviews in Fish Biology and Fisheries,2004,14(2):277-294.

    36. [36]

      XIONG X J,YE Z L.Study of nitrification behavior in aerated biofilters using oyster shell carrier[J].Aquatic Ecosystem Health & Management,2006,9(1):15-19.

    37. [37]

      LU M Y,SHI X S,FENG Q,et al.Modification of oyster shell powder by humic acid for ammonium removal from aqueous solutions and nutrient retention in soil[J].Journal of Environmental Chemical Engineering,2021,9(6):106708.

    38. [38]

      YI M M,WANG C,WANG M,et al.Immobilized denitrifying bacteria on modified oyster shell as biofilter carriers enhance nitrogen removal[J].Journal of Environmental Chemical Engineering,2023,11(1):109214.

    39. [39]

      TAMJIDI S,AMERI A.A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater[J].Environmental Science and Pollution Research International,2020,27(25):31105-31119.

    40. [40]

      ZHANG F S,NRIAGU J O,ITOH H.Mercury removal from water using activated carbons derived from organic sewage sludge[J].Water Research,2005,39(2/3):389-395.

    41. [41]

      MARIANA M,H P S A K,MISTAR E M,et al.Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption[J].Journal of Water Process Engineering,2021,43:102221.

    42. [42]

      SAHA D,GRAPPE H A.Adsorption properties of activated carbon fibers[M].Amsterdam:Elsevier,2017:143-165.

    43. [43]

      PAN S C,LIN C C,TSENG D H.Reusing sewage sludge ash as adsorbent for copper removal from wastewater[J].Resources,Conservation and Recycling,2003,39(1):79-90.

    44. [44]

      LIU Y H,CAO Q L,LUO F,et al.Biosorption of Cd2+,Cu2+,Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae[J].Journal of Hazardous Materials,2009,163(2/3):931-938.

    45. [45]

      CHO H,OH D,KIM K.A study on removal characteristics of heavy metals from aqueous solution by fly ash[J].Journal of Hazardous Materials,2005,127(1/2/3):187-195.

    46. [46]

      HSU T C.Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder[J].Journal of Hazardous Materials,2009,171(1/2/3):995-1000.

    47. [47]

      XIA C H,ZHANG X Y,XIA L H.Heavy metal ion adsorption by permeable oyster shell bricks[J].Construction and Building Materials,2021,275:122128.

    48. [48]

      DU Y,LIAN F,ZHU L Y.Biosorption of divalent Pb,Cd and Zn on aragonite and calcite mollusk shells[J].Environmental Pollution,2011,159(7):1763-1768.

    49. [49]

      LIAN W L,LI H Y,YANG J H,et al.Influence of pyrolysis temperature on the cadmium and lead removal behavior of biochar derived from oyster shell waste[J].Bioresource Technology Reports,2021,15:100709.

    50. [50]

      WU S R,LIANG L,ZHANG Q,et al.The ion-imprinted oyster shell material for targeted removal of Cd(Ⅱ) from aqueous solution[J].Journal of Environmental Management,2022,302:114031.

    51. [51]

      PU L,XIE Y P,QIU W T,et al.Thermoplastic foaming mechanism and Pb2+ adsorption of poly(vinyl alcohol)/shell powder porous composite[J].Polymer Composites,2019,40(12):4658-4668.

    52. [52]

      XU X,LIU X F,OH M,et al.Oyster shell as a low-cost adsorbentfor removing heavy metal ions from wastewater[J].Polish Journal of Environmental Studies,2019,28(4):2949-2959.

    53. [53]

      ZAHARIA M M,BUCATARIU F,DOROFTEI F,et al.Multifunctional CaCO3/polyelectrolyte sorbents for heavy metal ions decontamination of synthetic waters[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,613:126084.

    54. [54]

      ZHANG Y,ZHANG L,GAO R H,et al.CaCO3-coated PVA/BC-based composite for the simultaneous adsorption of Cu(Ⅱ),Cd(Ⅱ),Pb(Ⅱ) in aqueous solution[J].Carbohydrate Polymers,2021,267:118227.

    55. [55]

      BOLAN N,SARMAH A K,BORDOLOI S,et al.Soil acidification and the liming potential of biochar[J].Environmental Pollution,2023,317:120632.

    56. [56]

      WANG J Z,ZHEN J N,HU W F,et al.Remote sensing of soil degradation:Progress and perspective[J].International Soil and Water Conservation Research,2023,11(3):429-454.

    57. [57]

      YANG X D,NI K,SHI Y Z,et al.Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J].Agriculture,Ecosystems & Environment,2018,252:74-82.

    58. [58]

      CAI Z J,WANG B R,ZHANG L,et al.Striking a balance between N sources:Mitigating soil acidification and accumulation of phosphorous and heavy metals from manure[J].Science of the Total Environment,2021,754:142189.

    59. [59]

      王悦,陈爽,曹锐,等.耐盐菌联合化学复合改良剂协同改良黄河三角洲盐碱土壤的效果[J].水土保持学报,2023,37(1):354-360.

    60. [60]

      BRENNAN R F,BOLLAND M D A,BELL R W.Increased risk of zinc deficiency in wheat on soils limed to correct soil acidity[J].Soil Research,2005,43(5):647.

    61. [61]

      MARTIAL T T P,ARMEL M T R,JUSTE Y,et al.Application of heat-treated oyster shell powder to induce priming of Theobroma cocoa seedlings plant defense system against Phytophthora megakarya attack[J].Current Plant Biology,2023,34:100283.

    62. [62]

      姬佳旗.牡蛎壳粉调节土壤pH及控制烟草青枯病的效果研究[D].重庆:西南大学,2020.

    63. [63]

      SONG W L,ZENG Y,WU J L,et al.Effects of oyster shells on maturity and calcium activation in organic solid waste compost[J].Chemosphere,2023,345:140505.

    64. [64]

      王妍.牡蛎壳土壤调理剂对黄地脐橙、石硖龙眼品质的影响[D].厦门:集美大学,2022.

    65. [65]

      YANG E I,YI S T,LEEM Y M.Effect of oyster shell substituted for fine aggregate on concrete characteristics:Part I.Fundamental properties[J].Cement and Concrete Research,2005,35(11):2175-2182.

    66. [66]

      LIU Q,YI X Y,CANNONE FALCHETTO A,et al.UV-induced gradient aging of bitumen films:A comprehensive study[J].Fuel,2024,357:130088.

    67. [67]

      XU Y J,QU L Y,LIU Y,et al.An overview of alginates as flame-retardant materials:Pyrolysis behaviors,flame retardancy,and applications[J].Carbohydrate Polymers,2021,260:117827.

    68. [68]

      LIU W,ZHANG X,FAN J Y,et al.Study on the mechanical properties of man-made salt rock samples with impurities[J].Journal of Natural Gas Science and Engineering,2020,84:103683.

    69. [69]

      ZHANG G Y,LIN R S,WANG X Y.Effect of waste oyster shell powder on the properties of alkali-activated slag-waste ceramic geopolymers[J].Journal of Materials Research and Technology,2023,22:1768-1780.

    70. [70]

      BARABADI A,LU J.An investigation to the environmental impacts of a limestone mine in Neka,Iran[C]//IEEE.2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).Singapore:IEEE,2015:325-328.

    71. [71]

      ROMANELLI A,QUIROZ LONDOÑO O M,MARTÍNEZ D E,et al.Hydrogeochemistry and isotope techniques to determine water interactions in groundwater-dependent shallow lakes,Wet Pampa Plain,Argentina[J].Environmental Earth Sciences,2014,71(4):1953-1966.

    72. [72]

      DEL RÍO-MERINO M,VIDALES-BARRIGUETE A,PIÑA-RAMÍREZ C,et al.A review of the research about gypsum mortars with waste aggregates[J].Journal of Building Engineering,2022,45:103338.

    73. [73]

      REN J Y,PIAO J X,WANG Y F,et al.Effect of functionalized oyster shell powder with ammonium polyphosphate on fire safety performance of epoxy resin[J].Progress in Organic Coatings,2022,172:107054.

    74. [74]

      YOON H,PARK S,LEE K,et al.Oyster shell as substitute for aggregate in mortar[J].Waste Management & Research,2004,22(3):158-170.

    75. [75]

      KONG J F,CONG G W,NI S Y,et al.Recycling of waste oyster shell and recycled aggregate in the porous ecological concrete used for artificial reefs[J].Construction and Building Materials,2022,323:126447.

    76. [76]

      HAN Y,LIN R S,WANG X Y.Sustainable mixtures using waste oyster shell powder and slag instead of cement:Performance and multi-objective optimization design[J].Construction and Building Materials,2022,348:128642.

    77. [77]

      NAQI A,SIDDIQUE S,KIM H K,et al.Examining the potential of calcined oyster shell waste as additive in high volume slag cement[J].Construction and Building Materials,2020,230:116973.

    78. [78]

      SEO J H,PARK S M,YANG B J,et al.Calcined oyster shell powder as an expansive additive in cement mortar[J].Materials,2019,12(8):1322.

    79. [79]

      LIAO Y D,LI W Y,DA B,et al.Research on properties of waste oyster shell mortar:The effect of calcination temperature of oyster shell powder[J].Case Studies in Construction Materials,2023,19:e02639.

    80. [80]

      COSTES L,LAOUTID F,BROHEZ S,et al.Bio-based flame retardants:When nature meets fire protection[J].Materials Science and Engineering(R(Reports)),2017,117:1-25.

    81. [81]

      CHONG M H,CHUN B C,CHUNG Y C,et al.Fire-retardant plastic material from oyster-shell powder and recycled polyethylene[J].Journal of Applied Polymer Science,2006,99(4):1583-1589.

    82. [82]

      HU C,ZHONG D J,LI S L.A study on effect of oyster shell powder on mechanical properties of asphalt and multiple degrees of modification mechanism[J].Case Studies in Construction Materials,2023,18:e01786.

    83. [83]

      SILVA T H,MESQUITA-GUIMARÃES J,HENRIQUES B,et al.The potential use of oyster shell waste in new value-added by-product[J].Resources,2019,8(1):13.

    84. [84]

      KAMPA M,CASTANAS E.Human health effects of air pollution[J].Environmental Pollution,2008,151(2):362-367.

    85. [85]

      SZULCZYK K R,CHEEMA M A,ZIAEI S M.The economic feasibility of microalga to produce commercial biodiesel and reduce carbon dioxide emissions in Malaysia[J].Algal Research,2022,68:102871.

    86. [86]

      MUHAMMAD HAMMAD S,YAQOOB H,UMER FAROOQ M,et al.Enhancing diesel engine performance and emissions control with reduced graphene oxide and non-edible biodiesel blends[J]. Energy Conversion and Management(X),2024,24:100710.

    87. [87]

      OZOR P A,AIGBODION V S,SUKDEO N I.Modified calcium oxide nanoparticles derived from oyster shells for biodiesel production from waste cooking oil[J].Fuel Communications,2023,14:100085.

    88. [88]

      SHOBANA R,VIJAYALAKSHMI S,DEEPANRAJ B.Biodiesel production from Capparis spinosa L seed oil using calcium oxide as a heterogeneous catalyst derived from oyster shell[J].Materials Today(Proceedings),2023,80:3216-3220.

    89. [89]

      MIRKARIMI S M R,BENSAID S,NEGRO V,et al.Review of methane cracking over carbon-based catalyst for energy and fuels[J].Renewable and Sustainable Energy Reviews,2023,187:113747.

    90. [90]

      CHEN G X,YU X,OSTRIKOV K,et al.Methane up-carbonizing:A way towards clean hydrogen energy?[J].Chemical Engineering Journal,2023,476:146335.

    91. [91]

      SUN Q Y,ZHAO C H,QIU Q,et al.Oyster shell waste as potential co-substrate for enhancing methanogenesis of starch wastewater at low inoculation ratio[J].Bioresource Technology,2022,361:127689.

    92. [92]

      NOTODARMOJO P A,FUJIWARA T,HABUER,et al.Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion:Carbon flow analysis[J].Energy,2022,239:122177.

    93. [93]

      董希瑶,刘韶华,娄馨予,等.老年性骨质疏松临床常用钙制剂的研究进展[J].中国老年学杂志,2023,43(20):5112-5115.

    94. [94]

      VAVRUSOVA M,SKIBSTED L H.Calcium nutrition,bioavailability and fortification[J].LWT-Food Science and Technology,2014,59(2):1198-1204.

    95. [95]

      WANG Z,WANG K Y,FENG Y N,et al.Preparation,characterization of L-aspartic acid chelated calcium from oyster shell source and its calcium supplementation effect in rats[J].Journal of Functional Foods,2020,75:104249.

    96. [96]

      KE H L,MA R J,LIU X Y,et al.Highly effective peptide-calcium chelate prepared from aquatic products processing wastes:Stickwater and oyster shells[J].LWT-Food Science and Technology,2022,168:113947.

    97. [97]

      FUJITA T,FUKASE M,MIYAMOTO H,et al.Increase of bone mineral density by calcium supplement with oyster shell electrolysate[J].Bone and Mineral,1990,11(1):85-91.

    98. [98]

      LU J F,ZHOU B J,ZHANG X Y,et al.Oyster shell-derived CuFe2O4-hap nanocomposite for healthy houses:Bacterial and formaldehyde elimination[J].Chemical Engineering Journal,2023,477:147054.

    99. [99]

      ORLO E,RUSSO C,NUGNES R,et al.Natural methoxyphenol compounds:Antimicrobial activity against foodborne pathogens and food spoilage bacteria, and role in antioxidant processes[J].Foods,2021,10(8):1807.

    100. [100]

      李小霞.牡蛎壳粉在水果保鲜中的应用研究[D].福州:福建农林大学,2009.

    101. [101]

      YEN L T,WENG C H,THAN N A T,et al.Mode of inactivation of Staphylococcus aureus and Escherichia coli by heated oyster-shell powder[J].Chemical Engineering Journal,2022,432:134386.

    102. [102]

      JUN S W,SHIGA H,KOJIMA H.Kinetic analysis of the bactericidal action of heated scallop-shell powder[J].International Journal of Food Microbiology,2001,71(2/3):211-218.

    103. [103]

      ISSHIKI K,AZUMA K.Microbial growth suppression in food using calcinated calcium[J].Japan Agricultural Research Quarterly,1995,29:269-274.

    104. [104]

      KIM Y S,CHOI Y M,NOH D O,et al.The effect of oyster shell powder on the extension of the shelf life of tofu[J].Food Chemistry,2007,103(1):155-160.

    105. [105]

      CHOI Y M,WHANG J H,KIM J M,et al.The effect of oyster shell powder on the extension of the shelf-life of Kimchi[J].Food Control,2006,17(9):695-699.

    106. [106]

      NEVILLE F S.Mineral nutrition of livestock[M].4th ed. Wallingford:CABI,2010.

    107. [107]

      SCOTT M L,HULL S J,MULLENHOFF P A.The calcium requirements of laying hens and effects of dietary oyster shell upon egg shell quality[J].Poultry Science,1971,50(4):1055-1063.

    108. [108]

      ALETOR V A,ATURAMU O A.Use of oyster shell as calcium supplement.Part 2.An assessment of the responses of hepatic and serum enzymes,relative organ weights,and bone mineralization in the broiler chicken fed gossypol-containing cottonseed cake supplemented with oyster shell[J].Die Nahrung,1990,34(4):319-324.

    1. [1]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

    2. [2]

      李杉姜千一孙冰华温纪平王晓曦 . 麦麸糊粉层粉对混合粉、面团及手抓饼品质特性的影响. 轻工学报, 2024, 39(6): 18-26. doi: 10.12187/2024.06.003

    3. [3]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 0(0): -.

    4. [4]

      吕金羚傅亮陈永生 . 红茶-花生蛋白复合饮品工艺优化及其营养特性研究. 轻工学报, 2024, 39(5): 9-17. doi: 10.12187/2024.05.002

    5. [5]

      李敏贺姗姗杨钰雯 . 改良QuEChERS方法结合超高效液相色谱测定火腿肠中杂环胺类化合物. 轻工学报, 2024, 39(5): 60-70. doi: 10.12187/2024.05.007

    6. [6]

      李杉姜千一孙冰华温纪平王晓曦 . 麦麸糊粉层粉对面团及手抓饼品质特性的影响. 轻工学报, 2024, 0(0): -.

    7. [7]

      李艳坤张伟刘彦伶 . 数据融合策略在食用油真实性鉴别中的研究与应用进展. 轻工学报, 2024, 39(5): 50-59. doi: 10.12187/2024.05.006

    8. [8]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    9. [9]

      黄朵朵王乐雷萍孙志伟李林洪张智轩黄锋李斌 . 基于烟芯段和滤嘴段耦合的加热卷烟烟气关键成分释放模型构建. 轻工学报, 2024, 0(0): -.

    10. [10]

      黄朵朵王乐雷萍孙志伟李林洪张智轩黄锋李斌 . 基于烟芯段和滤嘴段耦合的加热卷烟烟气关键成分释放模型构建. 轻工学报, 2024, 39(6): 116-126. doi: 10.12187/2024.06.014

  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  239
  • 引证文献数: 0
文章相关
  • 通讯作者:  林祥志, lyndon2000@163.com
  • 收稿日期:  2023-12-11
  • 修回日期:  2024-03-27
  • 刊出日期:  2024-12-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
邱勇, 孟志容, 林祥志. 牡蛎壳粉资源化利用研究进展[J]. 轻工学报, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005
引用本文: 邱勇, 孟志容, 林祥志. 牡蛎壳粉资源化利用研究进展[J]. 轻工学报, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005
QIU Yong, MENG Zhirong and LIN Xiangzhi. Progress of oyster shell powder resource utilization research[J]. Journal of Light Industry, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005
Citation: QIU Yong, MENG Zhirong and LIN Xiangzhi. Progress of oyster shell powder resource utilization research[J]. Journal of Light Industry, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005

牡蛎壳粉资源化利用研究进展

    作者简介:邱勇(1988—),男,福建省建宁县人,泉州师范学院副教授,博士,主要研究方向为海洋生物资源综合利用。E-mail:qiuyong@qztc.edu.cn
    通讯作者: 林祥志, lyndon2000@163.com
  • 1. 福州大学 先进制造学院, 福建 晋江 352200;
  • 2. 泉州师范学院 海洋与食品学院/近海资源生物技术福建省高校重点实验室/福建省海洋藻类活性物质制备与功能开发重点实验室, 福建 泉州 362000
基金项目:  福建省海洋藻类活性物质制备与功能开发重点实验室开放课题(2022-KF03)福建省自然科学基金计划项目(2021J05186)泉州市“揭榜挂帅”重大技术攻关项目(2023NZ01)

摘要: 基于牡蛎壳所具有的高硬度、强耐腐蚀性和优良韧性等特性,梳理了牡蛎壳粉在环境治理与改良、建筑材料环保替代、可再生能源开发、食品与饲料营养成分保持和补充等方面的应用现状,指出,牡蛎壳粉可作为生物滤料和土壤改良剂,有效治理水体污染、促进土壤修复;可用作砂浆骨料替代品,并可制成生物阻燃剂等,减少建筑材料对自然资源的依赖,增强建筑材料的安全性能和使用性能;可作为一种高效环保催化剂,用于生物柴油、沼气等可再生能源的生产;还可作为钙补充剂、禽类饲料添加剂及抗菌剂,应用于食品与饲料行业,预防营养成分的流失并提高其安全性。尽管牡蛎壳粉的资源化利用展现出广阔的市场潜力,但其商业化进程仍受到加工成本、标准化和质量控制等技术的制约。未来的研究方向应集中在开发更高效的牡蛎壳粉处理技术,提升其在不同应用场景中的性能和价值,并探索其在新能源、生物医药等新兴领域的应用潜力,进一步推动牡蛎相关产业的可持续发展。

English Abstract

参考文献 (108) 相关文章 (10)

目录

/

返回文章