龙须菜渣纤维素/纳米纤维素及其水凝胶的制备和性能研究
Preparation and property study of cellulose/nanocellulose and its hydrogel from Gracilaria lemaneiformis residue
-
摘要: 以龙须菜(Gracilaria lemaneiformis)渣为主要原料制备龙须菜纤维素(GLC)和纳米纤维素(NGLC),并将其溶解于离子液体1-乙基-3-甲基咪唑醋酸盐中制备龙须菜纤维素水凝胶(GLC-H)和纳米纤维素水凝胶(NGLC-H),通过傅里叶变换红外光谱仪、X射线衍射仪、差示量热扫描仪等对其结构、形貌、热稳定性和流变性能进行表征分析,并考查GLC-H和NGLC-H的溶胀性能、释药性能和抑菌性能。结果表明:GLC、NGLC、GLC-H和NGLC-H的制备是一个非衍生化过程;GLC和NGLC在离子液体体系中成功交联形成孔道结构,且NGLC-H较GLC-H的三维网状结构更明显;GLC、NGLC形成水凝胶后,晶型从Ⅰ型转变为Ⅱ型,热稳定性有所降低;NGLC-H的吸水性能明显高于GLC-H,溶胀平衡时,二者的溶胀率分别为560.3%和175.3%;当药物释放时间为30 min时,载药GLC-H和载药NGLC-H的药物释放量均达到最大值,分别为87.22%和73.33%,且在整个载药过程中,后者的药物释放量均低于前者;载药GLC-H和载药NGLC-H均具有一定的抑菌作用,且两者效果相当。Abstract: Gracilaria lemaneiformis residue was used as a raw material to prepare Gracilaria lemaneiformis cellulose (GLC) and nanocellulose (NGLC), which were then used to develop cellulose (GLC-H) and nanocellulose hydrogels (NGLC-H) by dissolving them in ionic liquid 1-ethyl-3-methylimidazole acetate. Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry were employed to characterize and analyze the structure, morphology, thermal stability, and rheological properties. Additionally, the swelling properties, drug release performance, and antibacterial properties of GLC-H and NGLC-H were investigated. The results indicated that the preparation of GLC, NGLC, GLC-H, and NGLC-H was a non-derivatization process. GLC and NGLC successfully crosslinked to form a porous structure in the ionic liquid system, with the three-dimensional network structure of NGLC-H being more pronounced than that of GLC-H. After forming hydrogels, the crystalline form of GLC and NGLC changed from type Ⅰ to type Ⅱ, and their thermal stability decreased. The water absorption performance of NGLC-H was significantly higher than that of GLC-H, with swelling rates of 560.3% and 175.3% respectively at equilibrium. When the drug release time was 30 minutes, the maximum drug release amounts from drug-loaded GLC-H and drug-loaded NGLC-H were 87.22% and 73.33% respectively. Throughout the drug-loading process, the drug release amount from NGLC-H was consistently lower than that from GLC-H. Both drug-loaded GLC-H and drug-loaded NGLC-H exhibited certain antibacterial effects, with comparable efficacy.
-
-
[1]
DU H S,LIU W,ZHANG M M,et al.Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications[J].Carbohydrate Polymers,2019,209: 130-144.
-
[2]
KABIR S M F,SIKDAR P P,HAQUE B,et al.Cellulose-based hydrogel materials: Chemistry,properties and their prospective applications[J].Progress in Biomaterials,2018,7(3): 153-174.
-
[3]
LI Z Q,ZHANG Y,ANANKANBIL S,et al.Applications of nanocellulosic products in food: Manufacturing processes,structural features and multifaceted functionalities[J].Trends in Food Science & Technology,2021,113: 277-300.
-
[4]
赵少杰.柑橘皮渣中多糖基资源的高值化利用:果胶乳液与纤维素纳米晶的制备、表征、机理与应用[D].北京:中国农业科学院,2020.
-
[5]
戴宏杰.菠萝皮渣纤维素基水凝胶的制备、表征及其性能研究[D].广州:华南理工大学,2018.
-
[6]
HUANG K L,WANG B,CAO Y,et al.Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid[J].Journal of Agricultural and Food Chemistry,2011,59(10):5376-5381.
-
[7]
MEDRONHO B,LINDMAN B.Competing forces during cellulose dissolution:From solvents to mechanisms[J].Current Opinion in Colloid & Interface Science,2014,19(1):32-40.
-
[8]
王晨,刘文波.纤维素溶剂及其溶解性能和特点[J].黑龙江造纸,2018,46(3):26-30
,33. -
[9]
陈裙凤,刘茜,杨嘉玮,等.纤维素离子凝胶的制备及性能[J].复合材料学报,2021,38(12):4247-4254.
-
[10]
LEFROY K S,MURRAY B S,RIES M E,et al.A natural,cellulose-based microgel for water-in-oil emul-sions[J].Food Hydrocolloids,2021,113:106408.
-
[11]
谢妍妍,柴云,张普玉.离子液体溶解纤维素的研究[J].化学通报,2020,83(12):1104-1112.
-
[12]
郭斌.江蓠、浒苔、藻渣和菌渣替代鱼粉对大菱鲆和红鳍东方鲀生长性能及相关生化指标的影响[D].上海:上海海洋大学,2018.
-
[13]
袁森.螺旋藻藻渣综合利用的研究[D].北京:北京林业大学,2021.
-
[14]
周端.菠萝渣纤维素和半纤维素基水凝胶的制备、表征及其应用[D].广州:华南理工大学,2016.
-
[15]
李晓茹.生物质纤维与水凝胶复合功能性伤口敷料的制备及性能研究[D].青岛:青岛大学,2019.
-
[16]
程茜彤,靳婷,马楚雯,等.海洋环境微生物的分离和抑菌活性菌株的筛选[J].渔业研究,2023,45(1):46-53.
-
[17]
王培鑫.聚乙烯醇复合水凝胶的制备及其缓释性能的研究[D].杭州:浙江工业大学,2020.
-
[18]
潘敏.纤维素基水凝胶的构筑与性能研究[D].长春:长春工业大学,2022.
-
[19]
赵宝宝.纤维素基水凝胶的制备及其对亚甲基蓝染料和重金属离子的吸附研究[D].烟台:烟台大学,2021.
-
[20]
刘玉.纳米纤维素基水凝胶负载铁镍双金属催化剂的制备及对二氯苯的脱氯性能[D].广州:华南理工大学,2017.
-
[21]
行云逸.利用菠萝果肉纤维素构建水凝胶-脂质体复合载药体系及其缓释的研究[D].广州:华南理工大学,2020.
-
[22]
SHAN S,SUN X F,XIE Y Y,et al.High-performance hydrogel adsorbent based on cellulose,hemicellulose,and lignin for copper(Ⅱ) ion removal [J].Polymers,2021,13(18):3063.
-
[23]
HU X Y,HU K,ZENG L L,et al.Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study[J].Carbohydrate Polymers,2010,82(1):62-68.
-
[24]
WU C L,MCCLEMENTS D J,HE M Y,et al.The measurement of molecular interactions,structure and physical properties of okara cellulose composite hydrogels using different analytical methods [J].Science of Food and Agriculture,2022,102(10):4162-4170.
-
[25]
HU F Q,HU Y C,ZHANG L L,et al.Preparation and characterization of self-reinforced paper using NaOH/thiourea aqueous solution at room temperature [J].Bioresources,2020,15(4):8191-8201.
-
[26]
NAM S,FRENCH A D,CONDON B D,et al.Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose Ⅱ[J].Carbohydrate Polymers,2016,135:1-9.
-
[27]
GAN S,ZAKARIA S,CHIA C H,et al.Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel[J].Carbohydrate Polymers,2015,115:62-68.
-
[28]
贾超.木质纤维素材料纳米化及原位处理制备功能材料研究[D].北京:北京理工大学,2017.
-
[29]
LI X Q,LIN R X,NI G,et al.Three-dimensional artificial transpiration for efficient solar waste-water treatment[J].National Science Review,2018,5(1):70-77.
-
[30]
沈佩瑶.纳米纤维素及其聚乙烯醇复合材料的制备与性能[D].广州:华南理工大学,2019.
-
[31]
张磊.再生纤维素水凝胶材料构建及光催化性能研究[D].北京:北京林业大学,2021.
-
[32]
王蒙.多功能壳聚糖基药物控释水凝胶敷料的制备及性能研究[D].广州:华南理工大学,2022.
-
[1]
计量
- PDF下载量: 5
- 文章访问数: 252
- 引证文献数: 0