JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 40 Issue 2
April 2025
Article Contents
FAN Huiping, DU Zhaowei, LI Zhen, et al. Rapid detection of wheat special flour quality characteristics based on near-infrared spectroscopy technology[J]. Journal of Light Industry, 2025, 40(2): 51-60. doi: 10.12187/2025.02.006
Citation: FAN Huiping, DU Zhaowei, LI Zhen, et al. Rapid detection of wheat special flour quality characteristics based on near-infrared spectroscopy technology[J]. Journal of Light Industry, 2025, 40(2): 51-60. doi: 10.12187/2025.02.006 shu

Rapid detection of wheat special flour quality characteristics based on near-infrared spectroscopy technology

  • Corresponding author: AI Zhilu, zhilafood@sina.com
  • Received Date: 2024-07-19
    Accepted Date: 2024-11-06
  • Based on near-infrared spectroscopy technology, combined with different preprocessing and characteristic wavelength screening methods, partial least squares(PLS)prediction models and overall prediction model were established for indicators such as damaged starch content, falling number, water absorption rate, stability time, stretching area, extensibility and maximum resistance. The results showed that detrend (DT) was the best preprocessing method for the prediction model of damaged starch content and water absorption rate, savitzky-gloay(SG) convolutional smoothing was the best preprocessing method for the prediction model of falling number and stretching area, and standard normal variable transformation (SNV) was the best preprocessing method for the prediction model of extensibility and maximum resistance. Competitive adaptive reweighted sampling (CARS) could effectively improve the prediction accuracy of models for damaged starch content, falling number, water absorption rate, stretching area and maximum resistance, with prediction determination coefficients of 0.964 1, 0.714 0, 0.975 5, 0.943 4 and 0.828 3, respectively, successive projections algorithm (SPA) had improved the performance of stability time and extensibility prediction models, with prediction determination coefficients of 0.713 5 and 0.953 0, respectively. The overall prediction model had improved its predictive performance for stability time, stretching area and maximum resistance, their residual predictive deviation increased from 1.86, 4.27 and 2.51 to 2.43, 5.26 and 3.11, respectively. In summary, near-infrared spectroscopy technology was effective and feasible for a non-destructive and rapid detection of the quality characteristics of wheat flour.
  • 加载中
    1. [1]

      刘鑫,王晓曦,史建芳.配麦和配粉在专用粉生产中的应用[J].现代面粉工业,2010,24(1):1-4.

    2. [2]

      李林轩,王晓芳,李硕,等.专用小麦粉生产的基本方法、必备条件和关键环节[J].现代面粉工业,2021,35(5):5-8.

    3. [3]

      张蓓,张剑,李梦琴,等.小麦粉破损淀粉含量对面团发酵性能的影响[J].食品与机械,2019,35(12):70-74.

    4. [4]

      LI E P,DHITAL S,HASJIM J.Effects of grain milling on starch structures and flour/starch properties[J].Starch-Stärke,2014,66(1/2):15-27.

    5. [5]

      朱丽伟,严金欣,黄娟,等.近红外光谱和人工神经网络的金苦荞氨基酸快速测定[J].光谱学与光谱分析,2022,42(1):49-55.

    6. [6]

      纪红昌,邱晓臣,柳文浩,等.花生籽仁含油量近红外模型的构建及其应用[J].中国油料作物学报,2022,44(5):1089-1097.

    7. [7]

      YE M Q,GAO Z P,LI Z,et al.Rapid detection of volatile compounds in apple wines using FT-NIR spectroscopy[J].Food Chemistry,2016,190:701-708.

    8. [8]

      SINIJA V R,MISHRA H N.FT-NIR spectroscopy for caffeine estimation in instant green tea powder and granules[J].LWT-Food Science and Technology,2009,42(5):998-1002.

    9. [9]

      何屹,杨本刚,尹嵩,等.基于随机蛙跳筛选的初烤烟叶中β-胡萝卜素和叶黄素含量近红外模型的建立[J].轻工学报,2024,39(2):100-106.

    10. [10]

      孙晓荣,张晨光,刘翠玲,等.近红外光谱技术对小麦粉品质定量快速检测[J].食品科技,2023,48(11):246-252.

    11. [11]

      肖润君.基于近红外光谱的小麦主要品质指标速测技术研究[D].保定:河北农业大学,2022.

    12. [12]

      ZHOU W Z,LEI Y Q,ZHOU Q D,et al.A rapid determination of wheat flours components based on near infrared spectroscopy and chemometrics[J].Vibrational Spectroscopy,2024,130:103650.

    13. [13]

      国家质量监督检验检疫总局,中国国家标准化管理委员会.粮油检验 小麦粉损伤淀粉测定 安培计法:GB/T 31577—2015[S].北京:中国标准出版社,2015.

    14. [14]

      国家质量监督检验检疫总局.小麦、黑麦及其面粉,杜伦麦及其粗粒粉降落数值的测定 Hagberg-Perten法:GB/T 10361—2008[S].北京:中国标准出版社,2008.

    15. [15]

      国家市场监督管理总局,国家标准化管理委员会.粮油检验 小麦粉面团流变学特性测试 粉质仪法:GB/T 14614—2019[S].北京:中国标准出版社,2019.

    16. [16]

      国家市场监督管理总局,国家标准化管理委员会.粮油检验 小麦粉面团流变学特性测试 拉伸仪法:GB/T 14615—2019[S].北京:中国标准出版社,2019.

    17. [17]

      陈斌,邹贤勇,朱文静.PCA结合马氏距离法剔除近红外异常样品[J].江苏大学学报(自然科学版),2008,29(4):277-279
      ,292.

    18. [18]

      张旭,白雪冰,汪学沛,等.近红外特征光谱的羊肉TVB-N浓度预测模型[J].光谱学与光谱分析,2021,41(11):3377-3384.

    19. [19]

      TANG C C,JIANG B Z,EJAZ I,et al.High-throughput phenotyping of nutritional quality components in sweet potato roots by near-infrared spectroscopy and chemometrics methods[J].Food Chemistry(X),2023,20:100916.

    20. [20]

      KOVALENKO I V,RIPPKE G R,HURBURGH C R.Determination of amino acid composition of soybeans(Glycine max)by near-infrared spectroscopy[J].Journal of Agricultural and Food Chemistry,2006,54(10):3485-3491.

    21. [21]

      刘翠玲,胡玉君,吴胜男,等.近红外光谱奇异样本剔除方法研究[J].食品科学技术学报,2014,32(5):74-79.

    22. [22]

      宋可可.基于近红外光谱的稳健建模技术研究[D].青岛:青岛科技大学,2023.

    23. [23]

      张乐,吴静珠,李江波,等.基于随机森林的单粒玉米种子水分近红外快速定量检测[J].中国粮油学报,2021,36(12):114-119.

    24. [24]

      袁媛.基于近红外光谱技术的面粉品质无损检测研究[D].长沙:湖南农业大学,2023.

    25. [25]

      李江波,郭志明,黄文倩,等.应用CARS和SPA算法对草莓SSC含量NIR光谱预测模型中变量及样本筛选[J].光谱学与光谱分析,2015,35(2):372-378.

    26. [26]

      LIN H J,YING Y B.Theory and application of near infrared spectroscopy in assessment of fruit quality:A review[J].Sensing and Instrumentation for Food Quality and Safety,2009,3(2):130-141.

    27. [27]

      陈嘉伟,周德强,崔晨昊,等.近红外光谱的小麦粉粉质特性预测模型研究[J].光谱学与光谱分析,2023,43(10):3089-3097.

    28. [28]

      CHEN J C,HU Y,LI X,et al.An independent validation reveals the potential to predict Hagberg-Perten falling number using spectrometers[J].The Plant Phenome Journal,2023,6(1):e20070.

    29. [29]

      GERISCH N,GUERREIRO R,WESPEL F,et al.Development of a near-infrared spectroscopy calibration for Hagberg falling number assessment of barley(Hordeum vulgare):A comparison of methods[J].Plant Breeding,2022,141(3):355-365.

    30. [30]

      严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005:31-39.

    31. [31]

      SEDLÁ AČG EK T,ŠVEC I.Water absorption of food wheat flour-comparison of direct and indirect methods[J].Croatian Journal of Food Science and Technology,2023,15(2):163-172.

    32. [32]

      涂金金,高淑娟,苏煜娴,等.面筋蛋白在发酵面团加工中的作用机制及研究进展[J].中国粮油学报,2024,39(4):210-222.

    33. [33]

      RUIZ C,ALAÍZ C M,DORRONSORO J R.A survey on kernel-based multi-task learning[J].Neurocomputing,2024,577:127255.

Article Metrics

Article views(117) PDF downloads(1) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return