基于高通量测序的实仓不同点位稻谷理化性质及真菌群落结构差异比较
Comparison of differences in physicochemical properties and fungal community structure of paddy at different positions in real warehouses using high-throughput sequencing
-
摘要: 对实仓不同点位的稻谷进行为期12个月的跟踪监测,测定其水分含量、脂肪酸值和霉菌总数,并采用高通量测序技术解析真菌群落结构的变化规律。结果表明:随着储藏时间的延长,中心点位稻谷样品(CS、LTS、LTS2)和四周点位稻谷样品(SS、HTS、HTS2)的水分含量均有所下降,而脂肪酸值均有所升高,其中SS样品携带的霉菌总数高于同期的CS样品,而HTS2样品霉菌的生长繁殖受到抑制,总数低于同期的LTS2样品;四周点位稻谷样品的Chao1和Observed species指数均逐渐减小,Shannon和Simpson指数均先减小后增大,Pielou’s evenness指数均大于同期四周点位稻谷样品;中心点位稻谷样品的Chao1、Observed species、Shannon和Simpson指数均先增大后减小,且Good’s coverage指数同四周点位稻谷样品一样,均大于0.99。实仓不同点位稻谷样品的真菌群落被分为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、毛霉门(Mucoromycola)、油壶菌门(Olpidiomycota)和被孢霉门(Mortierellomycota)这5个主要菌门,且巨座壳属(Magnaporthe)等菌属及早熟副茎孢菌(Parastagonospora_ poae)等菌种在不同点位稻谷样品中呈现不同的变化趋势;所有点位稻谷样品共有的ASV/OTU数量为38个,其中拥有独特真菌数量最多的是LTS样品,拥有独特真菌数量最少的是SS样品;另外,主成分分析(PCA)显示四周点位稻谷样品分布相对分散,而中心点位稻谷样品分布相对集中。因此,相较于实仓的四周点位,中心点位可提供相对更稳定的微环境,更有利于粮情的稳定。Abstract: Paddy samples at different positions in real warehouses were monitored for 12 months to determine their moisture content, fatty acid value, and total mold count. The changes in fungal community structure were analyzed using high-throughput sequencing technology. The results showed that as storage time prolonged, the moisture content of paddy samples at center positions (CS, LTS, LTS2) and peripheral positions (SS, HTS, HTS2) decreased, while the fatty acid value increased. The total mold count of SS samples was higher than that of CS samples at the same time point, whereas mold growth and reproduction in HTS2 samples were inhibited, resulting in a lower total count compared to LTS2 samples at the same time point. For paddy samples at peripheral positions, the Chao1 and Observed species indices gradually decreased, while the Shannon and Simpson indices first decreased and then increased. The Pielou’s evenness index of paddy samples at center positions was higher than that of samples at peripheral positions at the corresponding time points. The Chao1, Observed species, Shannon, and Simpson indices ofpaddy samples at center positions first increased and then decreased, and the Good’s coverage index for all samples was greater than 0.99. The fungal communities in paddy samples from different positions were classified into five main phyla: Ascomycota, Basidiomycota, Mucoromycota, Olpidiomycota, and Mortierellomycota. Fungal genera such as Magnaporthe and species such as Parastagonospora_poae exhibited distinct variation trends in paddy samples from different positions. Furthermore, among all paddy samples, 38 ASV/OTU were shared. LTS samples had the highest number of unique fungi, while SS samples had the lowest. In addition, principal component analysis (PCA) revealed that paddy samples at peripheral positions were relatively dispersed in distribution, while those at center positions were relatively concentrated. This indicates that, compared to peripheral positions in real warehouses, center positions provide a more stable microenvironment, which is more favorable for maintaining grain conditions.
-
Key words:
- paddy /
- storage /
- high-throughput sequencing /
- fungal community structure /
- grain condition
-
-
[1]
普蓂喆,陈希,钟钰,等.季节性流动视角下的中国粮食储备规模估算: 基于粮食产销流动中断风险的分析[J].中国农村经济,2023(5):2-22.
-
[2]
谭斌,翟小童.我国全谷物产业发展背景、现状与未来[J].粮油食品科技,2024,32(1):1-11
,13. -
[3]
BAUTISTA R C,COUNCE P A.An overview of rice and rice quality[J].Cereal Foods World,2020,65(5):52-60.
-
[4]
ZHAI Y H,PAN L H,LUO X H,et al.Effect of electron beam irradiation on storage,moisture and eating properties of high-moisture rice during storage[J].Journal of Cereal Science,2022,103:103407.
-
[5]
王炫凯,曲宝成.我国稻谷储藏技术的发展现状及未来趋势[J].粮食问题研究,2022(1):44-48.
-
[6]
OLORUNFEMI B J,KAYODE S E.Post-harvest loss and grain storage technology:A review[J].Turkish Journal of Agriculture-Food Science and Technology,2021,9(1):75-83.
-
[7]
韩赟,梁静,李成,等.稻谷储藏品质研究技术现状[J].农业工程,2020,10(12):45-49.
-
[8]
赵亚琪.国际粮食市场波动对我国的影响[J].中国经贸导刊(中),2020(9):85-88.
-
[9]
DE GUZMAN C,ESGUERRA M,LINSCOMBE S,et al.Genetic analysis of photoperiod/thermosensitive male sterility in rice under US environments[J].Crop Science,2017,57(4):1957-1965.
-
[10]
刘慧,周建新,方勇,等.稻谷储藏过程中微生物及品质变化规律研究[J].中国粮油学报,2020,35(1):126-131.
-
[11]
HU S K,HU P S.Research progress and prospect of functional rice[J].Chinese Journal of Rice Science,2021,35,311-325.
-
[12]
陈一帆,舒在习.六种优质籼稻后熟期间的品质变化比较[J].食品工业科技,2022,43(6):342-350.
-
[13]
李欣蔚.基于高通量测序探究东北粳稻储藏期间真菌群落的演替[J].现代食品科技,2022,38(7):98-106.
-
[14]
赵苹.基于水剂法分提制备液态羊尾油的初步研究[D].合肥:安徽大学,2021.
-
[15]
中华人民共和国国家卫生和计划生育委员会.食品安全国家标准 食品中水分的测定:GB 5009.3—2016[S].北京:中国标准出版社,2017.
-
[16]
国家质量监督检验检疫总局,中国国家标准化管理委员会.谷物碾磨制品 脂肪酸值的测定:GB/T 15684—2015[S].北京:中国标准出版社,2015.
-
[17]
国家卫生和计划生育委员会.食品安全国家标准 食品微生物学检验 霉菌和酵母计数:GB 4789.15—2016[S].北京:中国标准出版社,2017.
-
[18]
ZHANG Q F.Purple tomatoes,black rice and food security[J].Nature Reviews Genetics,2021,22(7):414.
-
[19]
方宝庆,葛志文,高瑀珑,等.不同储藏时间稻谷在粮仓不同位置的品质及霉菌差异分析[J].江苏农业科学,2018,46(10):195-199.
-
[20]
PITT J I,DAVID MILLER J.A concise history of mycotoxin research[J].Journal of Agricultural and Food Chemistry,2017,65(33):7021-7033.
-
[21]
LI W T,CUI J,LI J F,et al.Analysis of the fungi community variation during rice storage through high throughput sequencing[J].Processes,2022,10(4):754.
-
[22]
YU Y,CLARK J S,TIAN Q S,et al.Rice yield response to climate and price policy in high-latitude regions of China[J].Food Security,2022,14(5):1143-1157.
-
[23]
徐圆程,刘慧,王光宇,等.基于高通量测序分析储藏稻谷中的真菌群落结构与优势菌属[J].食品科学,2021,42(24):92-99.
-
[1]
-

计量
- PDF下载量: 5
- 文章访问数: 20
- 引证文献数: 0