JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

国外烟草活性成分提取及纤维材料利用研究现状与展望

池哲翔 廖敏 史尚 李声毅 廖芸 丁冬

池哲翔, 廖敏, 史尚, 等. 国外烟草活性成分提取及纤维材料利用研究现状与展望[J]. 轻工学报, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009
引用本文: 池哲翔, 廖敏, 史尚, 等. 国外烟草活性成分提取及纤维材料利用研究现状与展望[J]. 轻工学报, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009
CHI Zhexiang, LIAO Min, SHI Shang, et al. Current status and future perspectives on the extraction of active components and utilization of fiber materials from tobacco abroad[J]. Journal of Light Industry, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009
Citation: CHI Zhexiang, LIAO Min, SHI Shang, et al. Current status and future perspectives on the extraction of active components and utilization of fiber materials from tobacco abroad[J]. Journal of Light Industry, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009

国外烟草活性成分提取及纤维材料利用研究现状与展望

    作者简介: 池哲翔(1989—),男,福建省三明市人,国家烟草专卖局经济师,博士,主要研究方向为烟草行业产品质量监督、质量基础设施与科技创新评价。E-mail:chizx12@126.com;
    通讯作者: 丁冬,dingdong0923@126.com
  • 基金项目: 国家烟草专卖局、中国烟草总公司首席科学家创新专项项目(602022CK0550)
    河南省重点研发与推广专项项目(602024AS0150)
    国家烟草专卖局重点研发项目(110202102048,110202102051)
    中国工程科技发展战略河南研究院战略咨询研究项目(2023HENZDB01)

  • 中图分类号: TS42

Current status and future perspectives on the extraction of active components and utilization of fiber materials from tobacco abroad

    Corresponding author: DING Dong, dingdong0923@126.com
  • Received Date: 2024-04-02
    Accepted Date: 2024-07-26

    CLC number: TS42

  • 摘要: 针对烟草资源多用途开发与利用的关键问题,从烟草活性成分提取、纤维材料利用方面对国外技术研发现状进行梳理,指出:烟草活性成分包括烟碱、茄尼醇、多酚、蛋白、四酰基蔗糖酯、类活性成分(叶绿体、线粒体)等,其中,烟碱、绿原酸、茄尼醇含量和附加值均较高,且提取工艺较简单,在农药、医药、烟草制品添加物等领域具有较大的市场空间,国外已广泛实现产业化运营;纤维材料的利用包括动物饲料、纸张、纤维板、刨花板、硝化纤维、低聚木糖、生物炭有机肥等,其中,制备生物炭有机肥、纸张和纤维板是其规模利用的主要研究方向,技术较成熟,但生产成本相对较高,目前国外已有产业化的初步探索。未来,在进一步推动烟草多用途利用产业化发展时,围绕新型烟草制品添加物、医药用途场景,烟碱、茄尼醇和烟草致香成分提取是重要研究方向;围绕饲料应用场景,烟草新品种培育是重要发展方向;围绕大农业应用场景,基于烟草废弃物的多功能耦合的生物炭有机肥的开发是重要发展方向;此外,在成本许可范围内,增强型纸张和纤维板未来也将是烟草资源多用途利用的重点研发方向之一。
    1. [1]

      蒋捷媛,李玉昊,陈鹏,等.2023年国际烟草十大新闻[EB/OL].(2024-01-18
      )[2024-04-01].https://www.tobaccochina.com/html/focusnews/671834.shtml.

    2. [2]

      ARMSTRONG C,ANDERSON K.WHO global report on trends in prevalence of tobacco use 2000—2030[R].Geneva:World Health Organization,2024.

    3. [3]

      周茹.烟草多用途利用:前景广阔 未来可期[J].中国烟草,2023(20):71-77.

    4. [4]

      王金棒.烟草多用途利用创新战略研究报告[R].郑州:中国烟草总公司郑州烟草研究院,2023.

    5. [5]

      BUNTIĆ A V,MILIĆ M D,STAJKOVIĆ-SRBINOVIĆ O S,et al.Cellulase production by Sinorhizobium meliloti strain 224 using waste tobacco as substrate[J].International Journal of Environmental Science and Technology,2019,16(10):5881-5890.

    6. [6]

      BUNTIĆ A V,STAJKOVIĆ-SRBINOVIĆ O,DELIĆ D,et al.The production of cellulase from the waste tobacco residues remaining after polyphenols and nicotine extraction and bacterial pre-treatment[J].Journal of the Serbian Chemical Society,2019,84(2):129-140.

    7. [7]

      FATICA A,DI LUCIA F,MARINO S,et al.Study on analytical characteristics of Nicotiana tabacum L.,cv.Solaris biomass for potential uses in nutrition and biomethane production[J].Scientific Reports,2019,9(1):16828.

    8. [8]

      BARLA F G,KUMAR S.Tobacco biomass as a source of advanced biofuels[J].Biofuels,2019,10(3):335-346.

    9. [9]

      CARDOSO C R,ATAÍDE C H.Micropyrolysis of tobacco powder at 500 ℃:Influence of ZnCl2 and MgCl2 Contents on the generation of products[J].Chemical Engineering Communications,2015,202(4):484-492.

    10. [10]

      CARDOSO C R,ATAÍDE C H.Analytical pyrolysis of tobacco residue:Effect of temperature and inorganic additives[J].Journal of Analytical and Applied Pyrolysis,2013,99:49-57.

    11. [11]

      SALETNIK B,FIEDUR M,KWARCIANY R,et al.Pyrolysis as a method for processing of waste from production of cultivated tobacco (Nicotiana tabacum L.)[J].Sustainability,2024,16(7):2749.

    12. [12]

      SARBISHEI S,GOSHADROU A,HATAMIPOUR M S.Mild sodium hydroxide pretreatment of tobacco product waste to enable efficient bioethanol production by separate hydrolysis and fermentation[J].Biomass Conversion and Biorefinery,2021,11(6):2963-2973.

    13. [13]

      SOPHANODORN K,UNPAPROM Y,WHANGCHAI K,et al.Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production[J].Biomass Conversion and Biorefinery,2022,12(5):1627-1637.

    14. [14]

      FARRAN I,FERNANDEZ-SAN MILLAN A,ANCIN M,et al.Increased bioethanol production from commercial tobacco cultivars overexpressing thioredoxin f grown under field conditions[J].Molecular Breeding,2014,34(2):457-469.

    15. [15]

      GONZÁLEZ-GONZÁLEZ A,CUADROS F.Optimal and cost-effective industrial biomethanation of tobacco[J].Renewable Energy,2014,63:280-285.

    16. [16]

      AYAS N,KARADENIZ S.Hydrogen from tobacco waste[C]//IEEE. 2017 2nd International Conference Sustainable and Renewable Energy Engineering (ICSREE).Hiroshima:IEEE,2017:78-82.

    17. [17]

      ZHAO G H,YU Y L,ZHOU X T,et al.Effects of drying pretreatment and particle size adjustment on the composting process of discarded flue-cured tobacco leaves[J].Waste Management & Research,2017,35(5):534-540.

    18. [18]

      HERNER Ž,KU AČG IĆ D,ZELIĆ B.Biodegradation of imidacloprid by composting process[J].Chemical Papers,2017,71(1):13-20.

    19. [19]

      SEREMETA D C H,DA SILVA C P,ZITTEL R,et al.Pb2+ adsorption by a compost obtained from the treatment of tobacco from smuggled cigarettes and industrial sewage sludge[J].Environmental Science and Pollution Research,2019,26(1):797-805.

    20. [20]

      MANDIĆ N,LALEVIĆ B,RAI AČG EVIĆ V,et al.Impact of composting conditions on the nicotine degradation rate using nicotinophilic bacteria from tobacco waste[J].International Journal of Environmental Science and Technology,2023,20(7):7787-7798.

    21. [21]

      ESCUDERO L B,AGOSTINI E,DOTTO G L.Application of tobacco hairy roots for the removal of malachite green from aqueous solutions:Experimental design,kinetic,equilibrium,and thermodynamic studies[J].Chemical Engineering Communications,2018,205(1):122-133.

    22. [22]

      AMIRIPOUR F,GHASEMI S,CHAICHI M J.Nanostructured rhodamine B/aluminosilicate extracted sugarcane bagasse modified with tobacco-derived carbon quantum dot as ratiometric fluorescence probe for determination of tetracycline[J].Talanta,2024,276:126158.

    23. [23]

      GONÇALVES A C Jr,ZIMMERMANN J,SCHWANTES D,et al.Recycling of tobacco wastes in the development of ultra-high surface area activated carbon[J].Journal of Analytical and Applied Pyrolysis,2023,171:105965.

    24. [24]

      PATHAK M,ROUT C S.Flexible all-solid-state asymmetric supercapacitor based on in situ-grown bimetallic metal sulfides/Ti3C2Tx MXene nanocomposite on carbon cloth via a facile hydrothermal method[J].Journal of Electronic Materials,2023,52(3):1668-1680.

    25. [25]

      JOKIĆ S,GAGIĆ T,KNEZ Ž,et al.Separation of active compounds from tobacco waste using subcritical water extraction[J].The Journal of Supercritical Fluids,2019,153:104593.

    26. [26]

      KUNG S D,SAUNDER J A,TSO T C,et al.Tobacco as a potential food source and smoke material:Nutritional evaluation of tobacco leaf protein[J].Journal of Food Science,1980,45(2):320-322.

    27. [27]

      DANEHOWER D A.A rapid method for the isolation and quantification of the sucrose esters of tobacco[C]//NCSU. Centre de Coopération pour les Recherches Scientifiques Relatives au Tabac/Cooperation Centre for Scientific Research Relative to Tobacco,1987:32-35.

    28. [28]

      JAGENDORF A T,WILDMAN S G.The proteins of green leaves.Ⅵ.centrifugal fractionation of tobacco leaf homogenates and some properties of isolated chloroplasts[J].Plant Physiology,1954,29(3):270-279.

    29. [29]

      PIERPOINT W S.Mitochondrial preparations from the leaves of tobacco (Nicotiana tabacum).2.Oxidative phosphorylation[J].Biochemical Journal,1960,75(3):504-511.

    30. [30]

      PIERPOINT W S.Mitochondrial preparations from the leaves of tobacco (Nicotiana tabacum).433.Glycollic oxidase and fumarase activity[J].Biochemical Journal,1960,75(3):511-515.

    31. [31]

      QUIK M,HUANG L Z,PARAMESWARAN N,et al.Multiple roles for nicotine in Parkinson’s disease[J].Biochemical Pharmacology,2009,78(7):677-685.

    32. [32]

      WWexner Medical Center.Clinical study asks:Can nicotine help treat a chronic lung disease?[EB/OL].(2017-08-28)[2024-04-02].https://wexnermedical.osu.edu/mediaroom/pressreleaselisting/nicotinepatchstudy.

    33. [33]

      RINCÓN J,DE LUCAS A,GARCÍA M A,et al.Preliminary study on the supercritical carbon dioxide extraction of nicotine from tobacco wastes[J].Separation Science and Technology,1998,33(3):411-423.

    34. [34]

      TITA G J,NAVARRETE A,MARTÍN Á,et al.Model assisted supercritical fluid extraction and fractionation of added-value products from tobacco scrap[J].The Journal of Supercritical Fluids,2021,167:105046.

    35. [35]

      BANOŽIĆ M,GAGIĆ T, AČG OLNIK M,et al.Sequence of supercritical CO2 extraction and subcritical H2O extraction for the separation of tobacco waste into lipophilic and hydrophilic fractions[J].Chemical Engineering Research and Design,2021,169:103-115.

    36. [36]

      NG L K,HUPÉ M.Effects of moisture content in cigar tobacco on nicotine extraction Similarity between Soxhlet and focused open-vessel microwave-assisted techniques[J].Journal of Chromatography A,2003,1011(1/2):213-219.

    37. [37]

      HOSSAIN M M,SCOTT I M,BERRUTI F,et al.Optimizing pyrolysis reactor operating conditions to increase nicotine recovery from tobacco leaves[J].Journal of Analytical and Applied Pyrolysis,2015,112:80-87.

    38. [38]

      HOSSAIN M M,SCOTT I M,BERRUTI F,et al.A two-dimensional pyrolysis process to concentrate nicotine during tobacco leaf bio-oil production[J].Industrial Crops and Products,2018,124:136-141.

    39. [39]

      DE LUCAS A,CAÑIZARES P,GARCÍA M A,et al.Recovery of nicotine from aqueous extracts of tobacco wastes by an H+-form strong-acid ion exchanger[J].Industrial & Engineering Chemistry Research,1998,37(12):4783-4791.

    40. [40]

      FATHI R M,FAUZANTORO A,RAHMAN S F,et al.Column chromatography isolation of nicotine from tobacco leaf extract (Nicotiana tabaccum L.)[C]//AIP.Proceedings of the International Symposium of Biomedical Engineering (ISBE)2017.Bali:AIP,2018,1933:030011.

    41. [41]

      RUIZ-RODRIGUEZ A,BRONZE M R,DA PONTE M N.Supercritical fluid extraction of tobacco leaves:A preliminary study on the extraction of solanesol[J].The Journal of Supercritical Fluids,2008,45(2):171-176.

    42. [42]

      SAFITRA E R,MUHARAM Y,FARIZAL,et al.Solanesol sequential extraction from tobacco leaves using microwave-ultrasound-assisted extraction (MUAE):MAE optimization[J].Current Research in Green and Sustainable Chemistry,2024,8:100393.

    43. [43]

      MACHADO P A,FU H,KRATOCHVIL R J,et al.Recovery of solanesol from tobacco as a value-added byproduct for alternative applications[J].Bioresource Technology,2010,101(3):1091-1096.

    44. [44]

      SHIFFLETT J R,WATSON L,MCNALLY D J,et al.Analysis of the polyphenols of tobacco using pressurized liquid extraction(PLE) and ultra performance liquid chromatography with electrospray ionization-tandem mass spectometric detection (UPLC-ESI-MS/MS)[J].Beiträge Zur Tabakforschung International,2017,27(8):195-207.

    45. [45]

      KARABEGOVIĆ I T,VELJKOVIĆ V B,LAZIĆ M L.Ultrasound-assisted extraction of total phenols and flavonoids from dry tobacco (Nicotiana tabacum) leaves[J].Natural Product Communications,2011,6(12):1855-1856.

    46. [46]

      DOCHEVA M,DAGNON S,STATKOVA S,et al.Isolation of bioflavonoids from tobacco[J].Trakia Journal of Science,2012,10:79-83.

    47. [47]

      BANOŽIĆ M,BANJARI I,JAKOVLJEVIĆ M,et al.Optimization of ultrasound-assisted extraction of some bioactive compounds from tobacco waste[J].Molecules,2019,24(8):1611.

    48. [48]

      DOCHEVA M,DAGNON S,STATKOVA-ABEGHE S.Flavonoid content and radical scavenging potential of extracts prepared from tobacco cultivars and waste[J].Natural Product Research,2014,28(17):1328-1334.

    49. [49]

      TSIBRANSKA I,KARABOJIKOVA V,JELIAZKOV J R.Concentration of flavonoids in ethanolic extracts from tobacco leaves through nanofiltration[J].Bulgarian Chemical Communications,2016,48(2):232-237.

    50. [50]

      TSO T,LOWE R H,DEJONG D W.Homogenized leaf curing:I.theoreticai basis and some preliminary results[J].Beiträge zur Tabakforschung/Contributions to Tobacco Research,1975,8:44-51.

    51. [51]

      FU H,MACHADO P A,HAHM T S,et al.Recovery of nicotine-free proteins from tobacco leaves using phosphate buffer system under controlled conditions[J].Bioresource Technology,2010,101(6):2034-2042.

    52. [52]

      FÍLA J,HONYS D.Phosphoprotein enrichment from tobacco mature pollen crude protein extract[J].Methods in Molecular Biology,2017,1669:265-274.

    53. [53]

      SEVERSON R F,ARRENDALE R F,CHORTYK O T,et al.Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco leaf[J].Journal of Agricultural and Food Chemistry,1985,33(5):870-875.

    54. [54]

      ASHRAF-KHORASSANI M,TAYLOR L T,NAZEM N,et al.Isolation of Tetra-acyl sucrose esters from Turkish tobacco using supercritical fluid CO2 and comparison with conventional solvent extraction[J].Journal of Agricultural and Food Chemistry,2005,53(6):1866-1872.

    55. [55]

      POPOVA V,GOCHEV V,GIROVA T,et al.Extraction products from tobacco-aroma and bioactive compounds and activities[J].Current Bioactive Compounds,2015,11(1):31-37.

    56. [56]

      MISSAOUI B,KRAFFT J M,HAMDI N,et al.Valorizing industrial tobacco wastes within natural clays and chitosan nanocomposites for an ecofriendly insecticide[J].Waste Management,2023,168:146-155.

    57. [57]

      MURATA M,NAKAI Y,KAWAZU K,et al.Loliolide,a carotenoid metabolite,is a potential endogenous inducer of herbivore resistance[J].Plant Physiology,2019,179(4):1822-1833.

    58. [58]

      BAXTER A A,POON I K H,HULETT M D.The plant defensin NaD1 induces tumor cell death via a non-apoptotic,membranolytic process[J].Cell Death Discovery,2017,3(1):16102.

    59. [59]

      FATICA A,FANTUZ F,DI LUCIA F,et al.Ensiled biomass of Solaris tobacco variety used as forage:Chemical characteristics and effects on growth,welfare,and follow-up of Holstein heifers[J].Animal,2021,15(7):100235.

    60. [60]

      CHANDLER J P,GERRARD M W,VIGNEAUD V D.The utilization for animal growth of tobacco mosaic virus as a sole source of protein in the diet[J].Journal of Biological Chemistry,1947,171(2):823-828.

    61. [61]

      KAJITA S,ISHIFUJI M,OUGIYA H,et al.Improvement in pulping and bleaching properties of xylem from transgenic tobacco plants[J].Journal of the Science of Food and Agriculture,2002,82(10):1216-1223.

    62. [62]

      AKGüL M,UNER B,ÇAMLIBEL O,et al.Manufacture of medium density fiberboard(MDF) panels from agribased lignocellulosic biomass[J].Wood Research,2017,62(4):615-624.

    63. [63]

      OVALI S.Characterization of waste Nicotiana rustica L.(tobacco) fiber having a potential in textile and composite applications[J].Polymers,2024,16(8):1117.

    64. [64]

      MUVHIIWA R,MAWERE E,MOYO L B,et al.Utilization of cellulose in tobacco(Nicotiana tobacum) stalks for nitrocellulose production[J].Heliyon,2021,7(7):e07598.

    65. [65]

      KAJITA S,KATAYAMA Y,OMORI S.Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate:Coenzyme a ligase[J].Plant & Cell Physiology,1996,37(7):957-965.

    66. [66]

      KAJITA S,MASHINO Y,NISHIKUBO N,et al.Immunological characterization of transgenic tobacco plants with a chimeric gene for 4-coumarate:CoA ligase that have altered lignin in their xylem tissue[J].Plant Science,1997,128(1):109-118.

    67. [67]

      KAJITA S,HISHIYAMA S,TOMIMURA Y,et al.Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:Coenzyme A ligase is depressed[J].Plant Physiology,1997,114(3):871-879.

    68. [68]

      SHAKHES J,MARANDI M A B,ZEINALY F,et al.Tobacco residuals as promising lignocellulosic materials for pulp and paper industry[J].BioResources,2011,6(4):4481-4493.

    69. [69]

      JIMENEZ J P,ACDA M N,RAZAL R A,et al.Influence of mixing waste tobacco stalks and paper mulberry wood chips on the physico-mechanical properties,formaldehyde emission,and termite resistance of particleboard[J].Industrial Crops and Products,2022,187:115483.

    70. [70]

      AKPINAR O,ERDOGAN K,BOSTANCI S.Enzymatic production of xylooligosaccharide from selected agricultural wastes[J].Food and Bioproducts Processing,2009,87(2):145-151.

    71. [71]

      AKPINAR O,ERDOGAN K,BAKIR U,et al.Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides[J].LWT-Food Science and Technology,2010,43(1):119-125.

    72. [72]

      SANTANA M B,GAMA F Á,PEREIRA I O,et al.Harnessing tobacco stem biomass for eco-friendly xylo-oligomers production via hydrothermal treatment and succinic acid via fermentation[J].Journal of Cleaner Production,2024,456:142305.

    73. [73]

      SANTANA M B,SOARES L B,ZANELLA E,et al.Hydrothermal pretreatment for the production of prebiotic oligosaccharides from tobacco stem[J].Bioresource Technology,2023,382:129169.

    74. [74]

      FENG Q W,WANG B,ZIMMERMAN A R.Application of C and N isotopes to the study of biochar biogeochemical behavior in soil:A review[J].Earth-Science Reviews,2024,256:104860.

    75. [75]

      SHARMA R K,WOOTEN J B,BALIGA V L,et al.Characterization of char from the pyrolysis of tobacco[J].Journal of Agricultural and Food Chemistry,2002,50(4):771-783.

    76. [76]

      STREZOV V,POPOVIC E,FILKOSKI R V,et al.Assessment of the thermal processing behavior of tobacco waste[J].Energy & Fuels,2012,26(9):5930-5935.

    77. [77]

      ONOREVOLI B,DA SILVA MACIEL G P,MACHADO M E,et al.Characterization of feedstock and biochar from energetic tobacco seed waste pyrolysis and potential application of biochar as an adsorbent[J].Journal of Environmental Chemical Engineering,2018,6(1):1279-1287.

    78. [78]

      BOOKER C J,BEDMUTHA R,SCOTT I M,et al.Bioenergy Ⅱ:Characterization of the pesticide properties of tobacco bio-oil[J].International Journal of Chemical Reactor Engineering,2010,8(1):A26.

    79. [79]

      BOOKER C J,BEDMUTHA R,VOGEL T,et al.Experimental investigations into the insecticidal,fungicidal,and bactericidal properties of pyrolysis bio-oil from tobacco leaves using a fluidized bed pilot plant[J].Industrial & Engineering Chemistry Research,2010,49(20):10074-10079.

    1. [1]

      池哲翔廖敏史尚李声毅廖芸丁冬 . 国外烟草活性成分提取及纤维材料利用现状与展望. 轻工学报, 2024, 0(0): -.

    2. [2]

      史清照范武任瑞冰柴国璧张文龙张启东张建勋李河霖 . 基于膜分离及柱色谱技术的烟草提取物精加工产品的制备. 轻工学报, 2025, 0(0): -.

    3. [3]

      杨鹏飞吴薇孙海峰刘龑章尚紫博薛晶晶许志杰宋梦坤 . GC-MS结合多元统计分析研究两种工艺提取的脐橙挥发性成分差异. 轻工学报, 2025, 0(0): -.

    4. [4]

      兰玉婷张逸飞郭佳慧尚欣欣刘影梁文魁王璐关国平 . 面向皮肤光电治疗术后热损伤护理的凝胶贴膜材料研究. 轻工学报, 2025, 40(1): 120-126. doi: 10.12187/2025.01.014

    5. [5]

      邱勇孟志容林祥志 . 牡蛎壳粉资源化利用研究进展. 轻工学报, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005

    6. [6]

      吴靖娜林泽烨苏筱张任翔陈晓婷潘南 . 龙须菜渣纤维素/纳米纤维素及其水凝胶的制备和性能研究. 轻工学报, 2024, 39(6): 49-56. doi: 10.12187/2024.06.006

    7. [7]

      张馨月闫倩楠杨泽豪于淼马挺军 . 虾青素鸡蛋的营养活性及风味研究. 轻工学报, 2025, 40(1): 41-48. doi: 10.12187/2025.01.005

    8. [8]

      梁淼雷添占小林刘思奎张兴全邹恩凯刘语煊周瑞芳 . 烘焙处理对烟草废弃物热解和燃烧特性的影响. 轻工学报, 2025, 40(3): 65-74. doi: 10.12187/2025.03.008

    9. [9]

      吴彦梁永伟薛云李天笑孙丽莉许春平徐志强 . 基于烟末和玫瑰混合提取的新型烟用香精及其应用研究. 轻工学报, 2025, 40(3): 56-64. doi: 10.12187/2025.03.007

    10. [10]

      胡仙妹于美逍杨雪鹏张展尹献忠 . 木醋杆菌和酿酒酵母混菌发酵对烟用细菌纤维素品质的影响. 轻工学报, 2024, 39(6): 84-92. doi: 10.12187/2024.06.010

    11. [11]

      王春琼刘凯谢永辉张轲刘春明张晓伟孙浩巍陈丹 . 烟草花叶病毒胶体金检测试纸条的制备与性能评价. 轻工学报, 2025, 40(1): 90-97. doi: 10.12187/2025.01.011

    12. [12]

      张丽华陈云莉石勇李顺峰查蒙蒙李昌文纵伟王小媛 . 植物乳杆菌发酵对红枣汁挥发性香气成分的影响. 轻工学报, 2024, 0(0): -.

    13. [13]

      倪众楚鹏飞林颖刘玉欣 . 低温长时间热处理过程中氧化和加热对海参体壁胶原纤维结构的影响. 轻工学报, 2025, 40(1): 21-31,57. doi: 10.12187/2025.01.003

    14. [14]

      胡新楠朱成凯胡中泽纪执立金伟平郭城沈汪洋 . 复配比对明胶-羟丙基甲基纤维素双水相体系微观结构和流变特性的影响. 轻工学报, 2025, 40(1): 11-20. doi: 10.12187/2025.01.002

    15. [15]

      徐愉聪何圣琪栾宏伟步营朱文慧励建荣李学鹏 . 硒代蛋氨酸对珍珠龙胆石斑鱼肌原纤维蛋白体外消化特性的影响. 轻工学报, 2025, 0(0): -.

    16. [16]

      柴武君郑闪闪游金清李茂松陆成飞薛晶晶杨靖 . 烟丝结构对中支卷烟的燃烧特性及烟气香味成分的影响. 轻工学报, 2025, 40(3): 104-114. doi: 10.12187/2025.03.012

    17. [17]

      望运滔郭秀琴王昱李胜杰栗俊广陈博白艳红 . 甲壳素颗粒与原花青素协同改善低盐条件下肌原纤维蛋白乳液凝胶的凝胶特性研究. 轻工学报, 2025, 40(3): 28-37. doi: 10.12187/2025.03.004

    18. [18]

      黄朵朵王乐雷萍孙志伟李林洪张智轩黄锋李斌 . 基于烟芯段和滤嘴段耦合的加热卷烟烟气关键成分释放模型构建. 轻工学报, 2024, 0(0): -.

    19. [19]

      黄朵朵王乐雷萍孙志伟李林洪张智轩黄锋李斌 . 基于烟芯段和滤嘴段耦合的加热卷烟烟气关键成分释放模型构建. 轻工学报, 2024, 39(6): 116-126. doi: 10.12187/2024.06.014

    20. [20]

      吴启贤陈子杰崔要强伍锦鸣赵谋明任胜超冯云子 . 不同产地烟叶碱提香料卷烟加香效果及化学成分差异分析. 轻工学报, 2025, 40(1): 98-106,119. doi: 10.12187/2025.01.012

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  11
  • 引证文献数: 0
文章相关
  • 通讯作者:  丁冬, dingdong0923@126.com
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-07-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
池哲翔, 廖敏, 史尚, 等. 国外烟草活性成分提取及纤维材料利用研究现状与展望[J]. 轻工学报, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009
引用本文: 池哲翔, 廖敏, 史尚, 等. 国外烟草活性成分提取及纤维材料利用研究现状与展望[J]. 轻工学报, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009
CHI Zhexiang, LIAO Min, SHI Shang, et al. Current status and future perspectives on the extraction of active components and utilization of fiber materials from tobacco abroad[J]. Journal of Light Industry, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009
Citation: CHI Zhexiang, LIAO Min, SHI Shang, et al. Current status and future perspectives on the extraction of active components and utilization of fiber materials from tobacco abroad[J]. Journal of Light Industry, 2025, 40(3): 75-85. doi: 10.12187/2025.03.009

国外烟草活性成分提取及纤维材料利用研究现状与展望

    作者简介:池哲翔(1989—),男,福建省三明市人,国家烟草专卖局经济师,博士,主要研究方向为烟草行业产品质量监督、质量基础设施与科技创新评价。E-mail:chizx12@126.com
    通讯作者: 丁冬, dingdong0923@126.com
  • 1. 国家烟草专卖局, 北京 100045;
  • 2. 江西省烟草公司赣州市公司, 江西 赣州 341000;
  • 3. 徐州医科大学 管理学院, 江苏 徐州 221004;
  • 4. 江西中烟工业有限责任公司 营销中心, 江西 南昌 330096
基金项目:  国家烟草专卖局、中国烟草总公司首席科学家创新专项项目(602022CK0550)河南省重点研发与推广专项项目(602024AS0150)国家烟草专卖局重点研发项目(110202102048,110202102051)中国工程科技发展战略河南研究院战略咨询研究项目(2023HENZDB01)

摘要: 针对烟草资源多用途开发与利用的关键问题,从烟草活性成分提取、纤维材料利用方面对国外技术研发现状进行梳理,指出:烟草活性成分包括烟碱、茄尼醇、多酚、蛋白、四酰基蔗糖酯、类活性成分(叶绿体、线粒体)等,其中,烟碱、绿原酸、茄尼醇含量和附加值均较高,且提取工艺较简单,在农药、医药、烟草制品添加物等领域具有较大的市场空间,国外已广泛实现产业化运营;纤维材料的利用包括动物饲料、纸张、纤维板、刨花板、硝化纤维、低聚木糖、生物炭有机肥等,其中,制备生物炭有机肥、纸张和纤维板是其规模利用的主要研究方向,技术较成熟,但生产成本相对较高,目前国外已有产业化的初步探索。未来,在进一步推动烟草多用途利用产业化发展时,围绕新型烟草制品添加物、医药用途场景,烟碱、茄尼醇和烟草致香成分提取是重要研究方向;围绕饲料应用场景,烟草新品种培育是重要发展方向;围绕大农业应用场景,基于烟草废弃物的多功能耦合的生物炭有机肥的开发是重要发展方向;此外,在成本许可范围内,增强型纸张和纤维板未来也将是烟草资源多用途利用的重点研发方向之一。

English Abstract

参考文献 (79) 相关文章 (20)

目录

/

返回文章