JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

γ-谷氨酰转肽酶的催化调控及其在食品加工中的应用研究进展

纵伟 高文雨 李顺峰 杜欣欣 张丽华

纵伟, 高文雨, 李顺峰, 等. γ-谷氨酰转肽酶的催化调控及其在食品加工中的应用研究进展[J]. 轻工学报, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001
引用本文: 纵伟, 高文雨, 李顺峰, 等. γ-谷氨酰转肽酶的催化调控及其在食品加工中的应用研究进展[J]. 轻工学报, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001
ZONG Wei, GAO Wenyu, LI Shunfeng, et al. Research progress on catalytic regulation of γ-glutamyl transpeptidase and its application in food processing[J]. Journal of Light Industry, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001
Citation: ZONG Wei, GAO Wenyu, LI Shunfeng, et al. Research progress on catalytic regulation of γ-glutamyl transpeptidase and its application in food processing[J]. Journal of Light Industry, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001

γ-谷氨酰转肽酶的催化调控及其在食品加工中的应用研究进展

    作者简介: 纵伟(1965—),男,安徽省萧县人,郑州轻工业大学教授,博士,主要研究方向为农产品加工与技术。E-mail:zongwei1965515@163.com;
    通讯作者: 张丽华,zhanglihua82828@163.com
  • 基金项目: 河南省重大科技专项项目(231100110400)

  • 中图分类号: TS201.3;Q814.9

Research progress on catalytic regulation of γ-glutamyl transpeptidase and its application in food processing

    Corresponding author: ZHANG Lihua, zhanglihua82828@163.com
  • Received Date: 2025-01-08
    Accepted Date: 2025-04-09
    Available Online: 2025-12-15

    CLC number: TS201.3;Q814.9

  • 摘要: γ-谷氨酰转肽酶(γ-Glutamyl Transpeptidase,GGT,EC 2.3.2.2)是催化γ-谷氨酰基转移与水解反应的关键酶,在生物活性物质合成和食品风味调控中具有重要作用。在国家减盐政策背景下,GGT通过提高天然鲜味物质的生物利用度,为食品工业“减盐不减鲜”提供了新思路。综述了GGT的来源、催化机制、制备方法、酶学性质、分子改造及固定化技术,以及其在食品加工中的应用现状。GGT广泛分布于动物、植物和微生物中,其催化遵循“乒乓机制”,通过酰化-去酰化反应生成γ-谷氨酰肽,可协同增强咸味感知并提升鲜味强度;通过分子改造和固定化技术,能有效提高GGT的催化效率、稳定性及重复使用性。在食品加工中,GGT已成功应用于酱油增鲜、风味物质合成等方面,但其规模化应用仍面临微生物发酵产酶效率低、固定化载体成本高等挑战。未来研究应进一步探索GGT的应用潜力,构建高产工程菌株,开发高效固定化催化剂,并建立基于代谢组学的风味调控模型,以充分发挥GGT在绿色食品加工与品质提升中的潜力。
    1. [1]

      SAINI M,KASHYAP A,BINDAL S,et al.Bacterial gamma-glutamyl transpeptidase,an emerging biocatalyst:Insights into structure-function relationship and its biotechnological applications[J].Frontiers in Micro-bology,2021,12:641251.

    2. [2]

      刘栓英,刘会灵,龙梦飞,等.γ-谷氨酰转肽酶高效表达及其催化合成γ-谷氨酰苯丙氨酸[J].食品与发酵工业,2021,47(18):23-29.
      LIU S Y,LIU H L,LONG M F,et al.Optimized expression of γ-glutamyltranspeptidase for efficient biosynthesis of γ-glutamylphenylalanine[J].Food and Fermentation Industries,2021,47(18):23-29.

    3. [3]

      付余,张宇昊.浓厚味γ-谷氨酰肽研究进展、机遇与挑战[J].中国食品学报,2022,22(4):14-24.
      FU Y,ZHANG Y H.Research progress,cpportunities,and challenges in the research of kokumi γ-glutamyl peptides[J].Journal of Chinese Institute of Food Science and Technology,2022,22(4):14-24.

    4. [4]

      XIA X Z,FU Y,MA L,et al.Protein hydrolysates from Pleurotus geesteranus modified by Bacillus amyloliquefaciens γ-glutamyl transpeptidase exhibit a remarkable taste-enhancing effect[J].Journal of Agricultural and Food Chemistry,2022,70(38):12143-12155.

    5. [5]

      林佳宜,沈起兵,徐心悦,等.食品减盐技术研究进展[J].食品科技,2025,50(2):276-284.
      LIN J Y,SHEN Q B,XU X Y,et al.Developments in foods salt reduction technology[J].Food Science and Technology,2025,50(2):276-284.

    6. [6]

      张祖政,毛泽敬,余华顺,等.γ-谷氨酰转肽酶在枯草芽孢杆菌中高效表达及发酵培养基优化[J].食品与发酵工业,2024,50(24):76-83.
      ZHANG Z Z,MAO Z J,YU H S,et al.Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis and optimization of enzyme-producing culture medium[J].Food and Fermentation Industries,2024,50(24):76-83.

    7. [7]

      SHI G Y,GAO W Y,XIAO Z B,et al.Purification and characterization of γ-glutamyl transpeptidase from Toona sinensis and its function on formation of sulfur-containing volatiles[J].Journal of Agricultural and Food Chemistry,2024,72(47):26376-26383.

    8. [8]

      刘栓英.γ-谷氨酰转肽酶分子改造及其应用[D].无锡:江南大学,2021. LIU S Y.Molecular modification of γ-glutamyltransferase and its application[D].Wuxi:Jiangnan University,2021.

    9. [9]

      陈倩琳.基于CRISPR/Cas9n的枯草芽孢杆菌中高效表达γ-谷氨酰基转肽酶及其固定化酶制备与茶氨酸合成应用[D].广州:华南理工大学,2023. CHEN Q L.Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis based on CRISPR/Cas9n system and its immobilized enzymes preparation with the application in the synthesis of theanine[D].Guangzhou:South China University of Technology,2023.

    10. [10]

      PENG S C, MAGDESIAN K G,DOWD J,et al.Investigation of high gamma-glutamyl transferase syndrome in California Thoroughbred racehorses[J].Journal of Veterinary Internal Medicine,2022,36(6):2203-2212.

    11. [11]

      CAO L C,LI Q,LAMETSCH R.Identification and activity characterization of γ-glutamyltransferase from bovine milk[J].Journal of Agricultural and Food Chemistry,2021,69(50):15325-15333.

    12. [12]

      MUNDAY J S,RIDLER A,ABERDEIN D,et al.Chronic facial eczema in sheep:Description of gross and histological changes in the liver and association with serum gamma-glutamyltransferase activity at the time of sporidesmin intoxication[J].New Zealand Veterinary Journal,2021,69(2):104-112.

    13. [13]

      PENG W,LI W L,CHAI L,et al.Construction of a sequence activated fluorescence probe for simultaneous detection of γ-glutamyl transpeptidase and peroxynitrite in acute kidney injury[J].Spectrochimica Acta Part A(Molecular and Biomolecular Spectroscopy),2025,325:125066.

    14. [14]

      WANG K,CHEN X Y,ZHANG R W Y,et al.Multifunctional fluorescence/photoacoustic bimodal imaging of γ-glutamyl-transpeptidase in liver disorders under different triggering conditions[J].Biomaterials,2024,310:122635.

    15. [15]

      QIU Y L,WANG L,HUANG M,et al.Association of novel TMEM67 variants with mild phenotypes of high gamma-glutamyl transpeptidase cholestasis and congenital hepatic fibrosis[J].Journal of Cellular Physiology,2022,237(6):2713-2723.

    16. [16]

      KONG F Y,DONG R,CHEN G,et al.Progress in biomarkers related to biliary atresia[J].Journal of Clinical and Translational Hepatology,2024,12(3):305-315.

    17. [17]

      REZAEETALAB F,NOORI S,SHAMSHIRIAN A,et al.The role of gamma-glutamyl transferase in acute exacerbation of chronic obstructive pulmonary disease severity:A cross-sectional study[J].Journal of Cardio-Thoracic Medicine,2023,11(4):1226-1236.

    18. [18]

      徐洪兰,彭云香.血清γ-谷氨酰转肽酶水平与冠状动脉病变严重程度的关系[J].医学信息,2024,37(22):94-97.
      XU H L,PENG Y X.Relationship between serum γ-glutamyl transpeptidase level and severity of coronary artery disease[J].Journal of Medical Information,2024,37(22):94-97.

    19. [19]

      SOMMA V,CALVIO C,RABUFFETTI M,et al.An overall framework for the E.coli γ-glutamyltransferase-catalyzed transpeptidation reactions[J].Bioorganic Chemistry,2021,115:105217.

    20. [20]

      CHI M C,LU B Y,HUANG Y F,et al.Effects of sodium dodecyl sulfate on the enzyme catalysis and conformation of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis[J].The Protein Journal,2023,42(1):64-77.

    21. [21]

      SUZUKI H,SASABU A.First example of the extracellular surface expression of intrinsically periplasmic Escherichia coli γ-glutamyltranspeptidase,a member of the N-terminal nucleophile hydrolase superfamily,and the use of cells as a catalyst for γ-glutamylvalylglycine production[J].Journal of Agricultural and Food Chemistry,2023,71(2):1132-1138.

    22. [22]

      CHEN J S,WANG F,YIN Y X,et al.The nutritional applications of garlic (Allium sativum)as natural feed additives in animals[J].PeerJ,2021,9:e11934.

    23. [23]

      DAI X M,YU Z F.Transcriptome analysis reveals the genes involved in S-alk(en)ylcysteine sulfoxide biosynthesis and its biosynthetic location in postharvest chive (Allium schoenoprasum L.)[J].Food Research International,2022,158:111548.

    24. [24]

      BHUIYAN N H,ROWLAND E,FRISO G,et al.Autocatalytic processing and substrate specificity of Arabidopsis chloroplast glutamyl peptidase[J].Plant Physiology,2020,184(1):110-129.

    25. [25]

      HONG M T,HAN D,QIAO J J,et al.Citric acid induces the increase in lenthionine content in shiitake mushroom,Lentinula edodes[J].Foods,2022,11(24):4110.

    26. [26]

      徐欢欢,李逸,高伟,等.洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定[J].中国农业科学,2021,54(19):4169-4178.
      XU H H,LI Y,GAO W,et al.Cloning and identification of γ-glutamyl transpeptidase AcGGT gene from onion(Allium cepa)[J].Scientia Agricultura Sinica,2021,54(19):4169-4178.

    27. [27]

      张华敏,张新岭,尹守恒,等.葱属植物S-烷(烯)基半胱氨酸亚砜代谢途径研究进展[J].广西植物,2023,43(2):221-233.
      ZHANG H M,ZHANG X L,YIN S H,et al.Research progress on metabolic pathway of S-alkyl(cn)ylcysteine sulfoxides in Allium[J].Guihaia,2023,43(2):221-233.

    28. [28]

      杨园园,王彬,刘燕,等.大蒜有机硫化物对药物代谢酶和转运体影响的研究进展[J].中南药学,2023,21(5):1321-1329.
      YANG Y Y,WANG B,LIU Y,et al.Research progress in the effect of garlic organicsulfur compounds on drug metabolic enzymes and transporters[J].Central South Pharmacy,2023,21(5):1321-1329.

    29. [29]

      BALTZI E,PAPALOUKAS C,SPANDIDOS D A,et al.Genes encoding γ-glutamyl-transpeptidases in the allicin biosynthetic pathway in garlic (Allium sativum)[J].Biomedical Reports,2024,20(3):45.

    30. [30]

      姚登福,董志珍,顾青青,等.GGT亚组分及基因亚型与肝癌的特异性诊断[J].世界华人消化杂志,2007,15(36):3775-3781.
      DENGFU Y,ZHIZHEN D,QINGQING G,et al.Specific diagnosis of gamma-glutamyl transferase subfraction and its genotyping for hepatocellular carcinoma[J].World Chinese Journal of Digestology,2007,15(36):3775-3781.

    31. [31]

      廖剑洪,杨娟,曾晓房,等.γ-谷氨酰转肽酶催化特性研究进展[J].中国食品学报,2023,23(11):403-412.
      LIAO J H,YANG J,ZENG X F,et al.Research progress on catalytic properties of γ-glutamyl transpeptidase[J].Journal of Chinese Institute of Food Science and Technology,2023,23(11):403-412.

    32. [32]

      杨娟,廖剑洪,郭晶,等.微生物γ-谷氨酰转肽酶分子改造合成γ-谷氨酰化合物的研究进展[J].中国调味品,2022,47(9):214-220.
      YANG J,LIAO J H,GUO J,et al.Research progress on synthesis of γ-glutamyl compounds by molecular modification of microbial γ-glutamyl transpeptidase[J].China Condiment,2022,47(9):214-220.

    33. [33]

      SUZUKI H.γ-Glutamyltranspeptidase essential for the metabolism of γ-glutamyl compounds in bacteria and its application[J].Bioscience,Biotechnology,and Biochemistry,2021,85(6):1295-1313.

    34. [34]

      杜少平,胡海艳,甘祥武,等.重组毕赤酵母产β-甘露聚糖酶的高密度发酵研究[J].轻工学报,2020,35(4):1-7.
      DU S P,HU H Y,GAN X W,et al.Study on high-density fermentation of β-mannanase produced by constitutive Pichia pastoris[J].Journal of Light Industry,2020,35(4):1-7.

    35. [35]

      ARAI S,SUZUKI H.Immobilization of E.coli expressing γ-glutamyltranspeptidase on its surface for γ-glutamyl compound production[J].AMB Express,2023,13(1):27.

    36. [36]

      HE W J,HUANG X L,KELIMU A,et al.Streamlined efficient synthesis and antioxidant activity of γ-[glutamyl] (n≥1)-tryptophan peptides by glutaminase from Bacillus amyloliquefaciens[J].Molecules,2023,28(13):4944.

    37. [37]

      CHO H B,AHN J H,YANG H G,et al.Effects of pH and NaCl on hydrolysis and transpeptidation activities of a salt-tolerant γ-glutamyltranspeptidase from Bacillus amyloliquefaciens S0904[J].Food Science and Biotechnology,2021,30(6):853-860.

    38. [38]

      SHARMA E,LAL M K,GULATI A,et al.Biochemical characterization of γ-glutamyl transpeptidase from Bacillus altitudinis IHB B1644 and its application in the synthesis of L-theanine[J].Journal of Agricultural and Food Chemistry,2023,71(14):5592-5599.

    39. [39]

      NONOMURA Y,WANG X J,KIKUCHI T,et al.Characterization of three γ-glutamyltranspeptidases from Pseudomonas aeruginosa PAO1[J].Journal of General and Applied Microbiology,2023,69(3):150-158.

    40. [40]

      FARHAT F,WASIM S,REHMAN L,et al.Affinity purification,identification,and biochemical characterization of Gamma-glutamyl transpeptidase,a membrane anchored enzyme of Gigantocotyle explanatum[J].Parasitology Research,2023,122(4):915-926.

    41. [41]

      SUN Y E,HU J,WANG W D,et al.Characterization of γ-glutamyltranspeptidases from dormant garlic and onion bulbs[J].Food Science & Nutrition,2019,7(2):499-505.

    42. [42]

      CHEN Q L,WANG B,PAN L.Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis via CRISPR/Cas9n and its immobilization[J].Applied Microbiology and Biotechnology,2024,108(1):149.

    43. [43]

      ZHANG Z H,LONG M F,ZHENG N,et al.Redesign of γ-glutamyl transpeptidase from Bacillus subtilis for high-level production of L-theanine by cavity topology engineering[J].Applied Microbiology and Biotechnology,2023,107(11):3551-3564.

    44. [44]

      SHARMA E,LAL M K,GULATI A,et al.Heterologous expression,on-column refolding and characterization of gamma-glutamyl transpeptidase gene from Bacillus altitudinis IHB B1644:A microbial bioresource from Western Himalayas[J].Process Biochemistry,2022,116:126-135.

    45. [45]

      SHARMA E,GULATI A,GULATI A.Statistical optimization of culture conditions of mesophillic gamma-glutamyl transpeptidase from Bacillus altitudinis IHB B1644[J].3 Biotech,2020,10(6):262.

    46. [46]

      GAO W Y,SHI G Y,ZHANG L H,et al.Optimization of fermentation conditions for producing γ-glutamyl transpeptidase by Bacillus licheniformis and enzymatic synthesis of characteristic volatile sulfur-containing compounds in Toona sinensis[J].Biochemical Engineering Journal,2025,215:109628.

    47. [47]

      孟克迪.香椿γ-GTP的提取纯化及其对特征风味形成的作用研究[D].郑州:河南工业大学,2024. MENG K D.Extraction and purification of γ-GTP from Toona sinensis and its effect on the formation of characteristic flavor[D].Zhengzhou:Henan University of Technology,2024.

    48. [48]

      SENBA H,NISHIKAWA A,KIMURA Y,et al.Improvement in salt-tolerance of Aspergillus oryzae γ-glutamyl transpeptidase via protein chimerization with Aspergillus sydowii homolog[J].Enzyme and Microbial Technology,2023,167:110240.

    49. [49]

      NISHIKAWA A,SENBA H,KIMURA Y,et al.Isolation and characterization of a salt-tolerant γ-glutamyl transpeptidase from xerophilic Aspergillus sydowii[J].3 Biotech,2022,12(10):253.

    50. [50]

      SAINI M,GUPTA R.Fabrication of chitosan-coated magnetite nanobiocatalyst with Bacillus atrophaeus γ-glutamyl transpeptidase and its application to the synthesis of a bioactive peptide SCV-07[J].Process Biochemistry,2022,122:238-249.

    51. [51]

      SANO C,ITOH T,PHUMSOMBAT P,et al.Mutagenesis and structure-based analysis of the role of Tryptophan525 of γ-glutamyltranspeptidase from Pseudomonas nitroreducens[J].Biochemical and Biophysical Research Communications,2021,534:286-291.

    52. [52]

      LI Z L,ZHU R T,LIU Y Q,et al.γ-glutamyl-transpeptidase from Bacillus amyloliquefaciens:Transpeptidation activity enhancement and L-theanine production[J].Enzyme and Microbial Technology,2020,140:109644.

    53. [53]

      CAO L C,LI Q,LAMETSCH R.Comparative analysis of substrate affinity and catalytic efficiency of γ-glutamyl transferase from bovine milk and Bacillus amyloliquefaciens[J].Food Chemistry,2023,405:134930.

    54. [54]

      邢胜利,宋丽丽,张志平,等.高产纤维素酶的里氏木霉液态发酵培养基条件优化[J].轻工学报,2022,37(1):20-25.
      XING S L,SONG L L,ZHANG Z P,et al.Optimization of liquid-state fermentation medium conditions for high yield cellulase by Trichoderma reesei[J].Journal of Light Industry,2022,37(1):20-25.

    55. [55]

      梁楚容,王琴,肖更生,等.发酵多肽Asp-Asp-Asp-Tyr和Asp-Tyr-Asp-Asp的稳定性研究[J].轻工学报,2023,38(2):48-55.
      LIANG C R,WANG Q,XIAO G S,et al.Study on the stability of fermented polypeptides Asp-Asp-Asp-Tyr and Asp-Tyr-Asp-Asp[J].Journal of Light Industry,2023,38(2):48-55.

    56. [56]

      LIN L L,LU B Y,CHI M C,et al.Activation and thermal stabilization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis ATCC 27811 by monovalent cations[J].Applied Microbiology and Biotechnology,2022,106(5/6):1991-2006.

    57. [57]

      WANG X J,HATTA S,MATSUI D,et al.Expression and characterization of C-terminal truncated mutants of γ-glutamyltranspeptidase Ⅱ (PaGGTⅡ)from Pseudomonas aeruginosa PAO1[J].Protein Expression and Purification,2023,210:106321.

    58. [58]

      魏涛,赵彩梦,郏未未,等.果糖基转移酶AoFT在毕赤酵母中的表达与纯化及其酶学性质研究[J].轻工学报,2020,35(3):1-10.
      WEI T,ZHAO C M,JIA W W,et al.Expression and purification of fructosyl transferase AoFT in Pichia pastoris and study on its enzymatic properties[J].Journal of Light Industry,2020,35(3):1-10.

    59. [59]

      YANG T W,IRENE K,LIU H L,et al.Enhanced extracellular gamma glutamyl transpeptidase production by overexpressing of PrsA lipoproteins and improving its mRNA stability in Bacillus subtilis and application in biosynthesis of L-theanine[J].Journal of Biotechnology,2019,302:85-91.

    60. [60]

      CHI M C,LO H F,LIN M G,et al.Mutational analysis of a highly conserved PLSSMXP sequence in the small subunit of Bacillus licheniformis γ-glutamyltranspeptidase[J].Biomolecules,2019,9(9):508.

    61. [61]

      王琳琳,高兴明,韦海涛,等.固定化酶在食品工业中的应用研究进展[J].轻工学报,2021,36(2):25-33.
      WANG L L,GAO X M,WEI H T,et al.Research progress in the application of immobilized enzymes in food industry[J].Journal of Light Industry,2021,36(2):25-33.

    62. [62]

      DING S S,ZHU J P,WANG Y,et al.Recent progress in magnetic nanoparticles and mesoporous materials for enzyme immobilization:An update[J].Revista Brasleira de Biologia,2021,82:e244496.

    63. [63]

      BAI Y,WU W.The neutral protease immobilization:Physical characterization of sodium alginate-chitosan gel beads[J].Applied Biochemistry and Biotechnology,2022,194(5):2269-2283.

    64. [64]

      MASDEU G,VÁZQUEZ L M,LÓPEZ-SANTÍN J,et al.Synthesis of a precursor of D-fagomine by immobilized fructose-6-phosphate aldolase[J].PLoS One,2021,16(4):e0250513.

    65. [65]

      SOLÉ J,BRUMMUND J,CAMINAL G,et al.Ketoisophorone synthesis with an immobilized alcohol dehydrogenase[J].ChemCatChem,2019,11(19):4862-4870.

    66. [66]

      MA T G,LI X J,WU X F,et al.Expression of Bacillus amyloliquefaciens γ-glutamyltransferase in Lactococcus lactis and immobilization on magnetic nanoparticles[J].ACS Food Science & Technology,2021,1(5):778-787.

    67. [67]

      PHUMSOMBAT P,SANO C,IKEZOE H,et al.Efficient production of L-theanine using immobilized recombinant Escherichia coli cells expressing a modified γ-glutamyl-transpeptidase gene from pseudomonas nitroreducens[J].Advances in Biological Chemistry,2020,10(6):157-171.

    68. [68]

      BRUNI M,ROBESCU M S,UBIALI D,et al.Immobilization of γ-glutamyl transpeptidase from equine kidney for the synthesis of kokumi compounds[J].ChemCatChem,2020,12(1):210-218.

    69. [69]

      李依韦,朱思琪,宋美慧,等.茶氨酸生物转化体系研究[J].内蒙古民族大学学报(自然科学版),2021,36(4):335-338
      ,344. LI Y W,ZHU S Q,SONG M H,et al.Study on the theanine biotransformation system[J].Journal of Inner Mongolia Minzu University(Natural Sciences Edition),2021,36(4):335-338,344.

    70. [70]

      CHI M C,HUANG Y F,LU B Y,et al.Magnetic cross-linked enzyme aggregates of a transpeptidase-specialized variant (N450D)of Bacillus licheniformis γ-glutamyl transpeptidase:An efficient and stable biocatalyst for l-theanine synthesis[J].Catalysts,2021,11(2):243.

    71. [71]

      XU L S,HAN F K,ZHANG X T,et al.Ultrasound enhanced biosynthesis of L-theanine from L-glutamine and ethylamine by recombinant γ-glutamyltranspeptidase[J].Bioresource Technology,2020,307:123251.

    72. [72]

      CAO L C,HUNT C J,LIN S,et al.Elucidation of the molecular mechanism of bovine milk γ-glutamyltransferase catalyzed formation of γ-glutamyl-valyl-glycine[J].Journal of Agricultural and Food Chemistry,2023,71(5):2455-2463.

    73. [73]

      FUKAO T,SUZUKI H.Enzymatic synthesis of γ-glutamylvalylglycine using bacterial γ-glutamyl-transpeptidase[J].Journal of Agricultural and Food Chemistry,2021,69(27):7675-7679.

    74. [74]

      王彦波,张云真,李文璐,等.植物性食物中风味物质的生物成味研究进展[J].食品科学技术学报,2024,42(1):1-9.
      WANG Y B,ZHANG Y Z,LI W L,et al.Research progress on biological flavor formation of flavor substance in plant-based foods[J].Journal of Food Science and Technology,2024,42(1):1-9.

    75. [75]

      LI Q,LIU J,CAO L C,et al.Effects of γ-glutamylated hydrolysates from porcine hemoglobin and meat on kokumi enhancement and oxidative stability of emulsion-type sausages[J].Food and Bioprocess Technology,2022,15(8):1851-1865.

    76. [76]

      SUZUKI H,NAKAFUJI Y,TAMURA T.New method to produce kokumi seasoning from protein hydrolysates using bacterial enzymes[J].Journal of Agricultural and Food Chemistry,2017,65(48):10514-10519.

    77. [77]

      HERES A,LI Q,TOLDRÁ F,et al.Comparative quantitation of kokumi γ-glutamyl peptides in Spanish dry-cured ham under salt-reduced production[J].Foods,2023,12(14):2814.

    78. [78]

      KIJIMA K,SUZUKI H.Improving the umami taste of soy sauce by the addition of bacterial γ-glutamyltranspeptidase as a glutaminase to the fermentation mixture[J].Enzyme and Microbial Technology,2007,41(1/2):80-84.

    79. [79]

      LIU P X,WU P,BI J X,et al.Putative transformation mechanism of γ-l-glutamyl-S-allyl-l-cysteine during the processing of black garlic[J].Journal of Agricultural and Food Chemistry,2025,73(5):2999-3007.

    80. [80]

      LI Z,PAN F,HUANG W,et al.Transcriptome reveals the key genes related to the metabolism of volatile sulfur-containing compounds in Lentinula edodes Mycelium[J].Foods,2024,13(14):2179.

    81. [81]

      WANG Z G,ZHAO L L,JIANG P F,et al.Sensory properties of rehydrated Toona sinensis shoots after dehydrated by different drying methods and association with gamma-glutamyl transferase reaction[J].Food Chemistry,2024,448:139075.

    1. [1]

      贾晨阳张帆刘兰茜王光路杨雪鹏 . 一株高耐受粗甘油枯草芽孢杆菌的分子机制研究. 轻工学报, 2025, 40(5): 44-54. doi: 10.12187/2025.05.006

    2. [2]

      张馨月闫倩楠杨泽豪于淼马挺军 . 虾青素鸡蛋的营养活性及风味研究. 轻工学报, 2025, 40(1): 41-48. doi: 10.12187/2025.01.005

    3. [3]

      侯强川张田王俊麟彭东郭力郭壮 . 隆中对酒业不同颜色高温大曲风味品质和细菌多样性研究. 轻工学报, 2025, 0(0): -.

    4. [4]

      侯强川张田王俊麟彭东郭力郭壮 . 隆中对酒业不同颜色高温大曲风味品质和细菌多样性研究. 轻工学报, 2025, 40(5): 11-19. doi: 10.12187/2025.05.002

    5. [5]

      邱勇孟志容林祥志 . 牡蛎壳粉资源化利用研究进展. 轻工学报, 2024, 39(6): 37-48. doi: 10.12187/2024.06.005

    6. [6]

      王祯许怡娟刘晨宋凯魏进彬臧志鹏胡威毛多斌 . 基于宏基因组学技术的发酵陕西烟叶混合菌开发. 轻工学报, 2025, 40(6): 87-97. doi: 10.12187/2025.06.009

    7. [7]

      史清照范武任瑞冰柴国璧张文龙张启东张建勋李河霖 . 基于膜分离及柱色谱技术的烟草提取物精加工产品的制备. 轻工学报, 2025, 0(0): -.

    8. [8]

      黄怡蔡文超余培荣陈炜单春会郭壮王玉荣 . 基于高通量测序和纯培养联用技术的药曲微生物多样性解析. 轻工学报, 2025, 0(0): -.

    9. [9]

      黄怡蔡文超余培荣陈炜单春会郭壮王玉荣 . 基于高通量测序和纯培养联用技术的药曲微生物多样性解析. 轻工学报, 2025, 40(5): 29-36. doi: 10.12187/2025.05.004

    10. [10]

      史清照范武任瑞冰柴国璧张文龙张启东张建勋李河霖 . 基于膜分离及柱色谱技术的烟草提取物精加工产品的制备. 轻工学报, 2025, 40(5): 101-109. doi: 10.12187/2025.05.012

    11. [11]

      郑艺宋芳张一帆云哲苏裕家申秀清 . 基于常规理化分析和电子传感技术的低度海红果酒发酵过程中品质动态变化研究. 轻工学报, 2025, 0(0): -.

    12. [12]

      郑艺宋芳张一帆云哲苏裕家申秀清 . 基于常规理化分析和电子传感技术的低度海红果酒发酵过程中品质动态变化研究. 轻工学报, 2025, 40(5): 20-28. doi: 10.12187/2025.05.003

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  203
  • 引证文献数: 0
文章相关
  • 通讯作者:  张丽华, zhanglihua82828@163.com
  • 收稿日期:  2025-01-08
  • 修回日期:  2025-04-09
  • 刊出日期:  2025-12-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
纵伟, 高文雨, 李顺峰, 等. γ-谷氨酰转肽酶的催化调控及其在食品加工中的应用研究进展[J]. 轻工学报, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001
引用本文: 纵伟, 高文雨, 李顺峰, 等. γ-谷氨酰转肽酶的催化调控及其在食品加工中的应用研究进展[J]. 轻工学报, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001
ZONG Wei, GAO Wenyu, LI Shunfeng, et al. Research progress on catalytic regulation of γ-glutamyl transpeptidase and its application in food processing[J]. Journal of Light Industry, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001
Citation: ZONG Wei, GAO Wenyu, LI Shunfeng, et al. Research progress on catalytic regulation of γ-glutamyl transpeptidase and its application in food processing[J]. Journal of Light Industry, 2025, 40(6): 1-12. doi: 10.12187/2025.06.001

γ-谷氨酰转肽酶的催化调控及其在食品加工中的应用研究进展

    作者简介:纵伟(1965—),男,安徽省萧县人,郑州轻工业大学教授,博士,主要研究方向为农产品加工与技术。E-mail:zongwei1965515@163.com
    通讯作者: 张丽华, zhanglihua82828@163.com
  • 1. 郑州轻工业大学 食品与生物工程学院, 河南 郑州 450001;
  • 2. 河南省农业科学院 农产品加工研究中心, 河南 郑州 450002
基金项目:  河南省重大科技专项项目(231100110400)

摘要: γ-谷氨酰转肽酶(γ-Glutamyl Transpeptidase,GGT,EC 2.3.2.2)是催化γ-谷氨酰基转移与水解反应的关键酶,在生物活性物质合成和食品风味调控中具有重要作用。在国家减盐政策背景下,GGT通过提高天然鲜味物质的生物利用度,为食品工业“减盐不减鲜”提供了新思路。综述了GGT的来源、催化机制、制备方法、酶学性质、分子改造及固定化技术,以及其在食品加工中的应用现状。GGT广泛分布于动物、植物和微生物中,其催化遵循“乒乓机制”,通过酰化-去酰化反应生成γ-谷氨酰肽,可协同增强咸味感知并提升鲜味强度;通过分子改造和固定化技术,能有效提高GGT的催化效率、稳定性及重复使用性。在食品加工中,GGT已成功应用于酱油增鲜、风味物质合成等方面,但其规模化应用仍面临微生物发酵产酶效率低、固定化载体成本高等挑战。未来研究应进一步探索GGT的应用潜力,构建高产工程菌株,开发高效固定化催化剂,并建立基于代谢组学的风味调控模型,以充分发挥GGT在绿色食品加工与品质提升中的潜力。

English Abstract

参考文献 (81) 相关文章 (12)

目录

/

返回文章