JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 41 Issue 1
February 2026
Article Contents
DING Xincheng, SUN Ruijie, JIA Shiru and et al. Study on improving the yield of whole-cell catalytic production of phenyllactic acid by heterologous expression of Vitreoscilla hemoglobin combined with regulation strategy[J]. Journal of Light Industry, 2026, 41(1): 69-80. doi: 10.12187/2026.01.007
Citation: DING Xincheng, SUN Ruijie, JIA Shiru and et al. Study on improving the yield of whole-cell catalytic production of phenyllactic acid by heterologous expression of Vitreoscilla hemoglobin combined with regulation strategy[J]. Journal of Light Industry, 2026, 41(1): 69-80. doi: 10.12187/2026.01.007 shu

Study on improving the yield of whole-cell catalytic production of phenyllactic acid by heterologous expression of Vitreoscilla hemoglobin combined with regulation strategy

  • Corresponding author: HOU Ying, houying@tust.edu.cn
  • Received Date: 2025-03-31
    Accepted Date: 2025-06-26
  • Objective】 This study aims to improve the oxygen (O2) utilization rate of strains in the whole-cell catalytic reaction system and efficiently catalyze the synthesis of phenyllactic acid (PLA) from phenylalanine (PHE). 【Methods】 Based on the effect of heterologous expression of Vitreoscilla hemoglobin (VHb) on the growth of host Escherichia coli, genetic engineering technology was used to construct a multi-enzyme coupled expression system including VHb, L-amino acid deaminase (L-AAD) and lactate dehydrogenase (LDH). Subsequently, the expression regulation strategies of key enzymes were optimized, and the genetic stability of recombinant strains was evaluated by continuous passage experiments. 【Results】 Heterologous expression of VHb could improve the oxygen utilization rate of strains and significantly promote the growth rate and maximum biomass of host E.coli. In shake flask culture, the time for the strain to enter the logarithmic growth phase during the scale-up culture stage was shortened by 1.5 h, and the maximum biomass was increased by 46% when VHb expression was induced alone. The dominant recombinant strain E.coli BL21 (pRSFDuet-aad-ldh-T7-rbs2-2vhb) was obtained by optimizing the VHb expression regulation strategy. Furthermore, the whole-cell catalytic reaction system was optimized, and the optimal reaction conditions were determined as follows: 0.010 mol/L PBS buffer, pH 7.0, temperature 37 ℃, and rotation speed 250 r/min. Under these conditions, the maximum PLA yield of the dominant recombinant strain was 53.7 g/L; The dominant recombinant strain had good stability; after 10 consecutive passages, the change rate of PLA yield in each generation was less than 5%, showing potential to become an industrial strain. 【Conclusion】 Heterologous co-expression of VHb can promote the growth of E.coli and improve the yield of PLA via whole-cell catalysis.
  • 加载中
    1. [1]

      MARTINS F C O L,SENTANIN M A,DE SOUZA D.Analytical methods in food additives determination:Compounds with functional applications[J].Food Chemistry,2019,272:732-750.

    2. [2]

      李波,郑凯茜,皇甫露露,等.苯乳酸在食品保鲜中的应用研究进展[J].包装工程,2022,43(15):129-136.
      LI B,ZHENG K X,HUANGFU L L,et al.Application and research progress of phenyllactic acid in food preservation[J].Packaging Engineering,2022,43(15):129-136.

    3. [3]

      罗希,杨泽锋,臧瑜,等.乳酸脱氢酶与葡萄糖脱氢酶偶联催化合成D-苯基乳酸[J].食品与发酵工业,2019,45(7):22-28.
      LUO X,YANG Z F,ZANG Y,et al.Synthesis of D-phenyllactic acid catalyzed by coupled lactate dehydrogenase and glucose dehydrogenase[J].Food and Fermentation Industries,2019,45(7):22-28.

    4. [4]

      WU H,GUANG C E,ZHANG W L,et al.Recent development of phenyllactic acid:Physicochemical properties,biotechnological production strategies and applications[J].Critical Reviews in Biotechnology,2023,43(2),293-308.

    5. [5]

      贾以泽,舒泉先,丛瑞涛,等.苯乳酸与DNA相互作用及其抑菌机制研究[J].食品与发酵工业,2024,50(5):67-75.
      JIA Y Z,SHU Q X,CONG R T,et al.Interaction between phenyllactic acid and DNA and its antibacterial mechanism[J].Food and Fermentation Industries,2024,50(5):67-75.

    6. [6]

      中华人民共和国国家卫生和计划生育委员会.食品安全国家标准食品添加剂使用标准:GB 2760—2024[J].北京:中国标准出版社,2024. National Health and Family Planning Commission of the People’s Republic of China.National food safety standard—standards for uses of food additives:GB 2760—2024[J].Beijing:Standards Press of China,2024.

    7. [7]

      WANG Y F,LUO X,SUN X L,et al.Lactate dehydrogenase encapsulated in a metal-organic framework:A novel stable and reusable biocatalyst for the synthesis of D-phenyllactic acid[J].Colloids and Surfaces B(Biointerfaces),2022,216:112604.

    8. [8]

      WU W Y,DENG G,LIU C J,et al.Optimization and multiomic basis of phenyllactic acid overproduction by Lactobacillus plantarum[J].Journal of Agricultural and Food Chemistry,2020,68(6):1741-1749.

    9. [9]

      曹艳丽,朱兵峰,时明星,等.透明颤菌血红蛋白的结构与功能及其在生物医药生产中的应用[J].中国医药工业杂志,2022,53(1):37-47.
      CAO Y L,ZHU B F,SHI M X,et al.Structure and function of Vitreoscilla hemoglobin and its application in the production of biomedicines[J].Chinese Journal of Pharmaceuticals,2022,53(1):37-47.

    10. [10]

      薛志勇,代红生,张显元,等.表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响[J].中国生物工程杂志,2021,41(11):32-39.
      XUE Z Y,DAI H S,ZHANG X Y,et al.Effects of Vitreoscilla hemoglobin gene on growth and intracellular oxidation state of Saccharomyces cerevisiae[J].China Biotechnology,2021,41(11):32-39.

    11. [11]

      苏嘉瓅.透明颤菌血红蛋白的定向进化及其催化合成吲哚嗪类化合物的研究[D].长春:吉林大学,2022. SU J L.Directed evolution of Vitreoscilla hemoglobin for the synthesis of indolizines[D].Changchun:Jilin University,2022.

    12. [12]

      JUÁREZ M,LA LOSA C H G D,MEMÚN E,et al.Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells[J].Biotechnology Journal,2017,12(3):1600438.

    13. [13]

      WEBSTER D A,DIKSHIT K L,PAGILLA K R,et al.The discovery of Vitreoscilla hemoglobin and early studies on its biochemical functions,the control of its expression,and its use in practical applications[J].Microorganisms,2021,9(8):1637.

    14. [14]

      韩琴,徐新星,王儒昕,等.敲除ptsG基因及共表达透明颤菌血红蛋白提高大肠杆菌SHMT产量[J].食品科学,2020,41(2):119-125.
      HAN Q,XU X X,WANG R X,et al.Knockout of ptsG and co-expression with Vitreoscilla hemoglobin enhance the production of serine hydroxymethyltransferase in Escherichia coli[J].Food Science,2020,41(2):119-125.

    15. [15]

      TANG R H,WENG C H,PENG X W,et al.Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions[J].Metabolic Engineering,2020,61:11-23.

    16. [16]

      LIU D,KE X,HU Z C,et al.Improvement of pyrroloquinoline quinone-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose[J].Journal of Bioscience and Bioengineering,2021,131(5):518-524.

    17. [17]

      ZHOU Q H,SU Z X,JIAO L C,et al.High-level production of a thermostable mutant of Yarrowia lipolytica lipase 2 in Pichia pastoris[J].International Journal of Molecular Sciences,2020,21(1):279.

    18. [18]

      MIRON[DD(-*2]'CZUK A M,KOSIOROWSKA K E,BIEGALSKA A,et al.Heterologous overexpression of bacterial hemoglobin VHb improves erythritol biosynthesis by yeast Yarrowia lipolytica[J].Microbial Cell Factories,2019,18(1):176.

    19. [19]

      DA SILVA A J,DE SOUZA CUNHA J,HREHA T,et al.Metabolic engineering of E.coli for pyocyanin production[J].Metabolic Engineering,2021,64:15-25.

    20. [20]

      YE J R,LIU M M,HE M X,et al.Illustrating and enhancing the biosynthesis of astaxanthin and docosahexaenoic acid in Aurantiochytrium sp.SK4[J].Marine Drugs,2019,17(1):45.

    21. [21]

      WANG X T,DING Y T,GAO X Y,et al.Promotion of the growth and plant biomass degrading enzymes production in solid-state cultures of Lentinula edodes expressing Vitreoscilla hemoglobin gene[J].Journal of Biotechnology,2019,302:42-47.

    22. [22]

      XUE S J,JIANG H,CHEN L,et al.Over-expression of Vitreoscilla hemoglobin (VHb)and flavohemoglobin (FHb)genes greatly enhances pullulan production[J].International Journal of Biological Macromolecules,2019,132:701-709.

    23. [23]

      张一帆,刘晓艳,万中义,等.不同启动子介导的vgb基因异源表达对诺沃霉素产量的影响[J].河南农业科学,2025,54(4):91-100.
      ZHANG Y F,LIU X Y,WAN Z Y,et al.Effect of heterologous expression of the vgb gene mediated by different promoters on novonestmycin production[J].Journal of Henan Agricultural Sciences,2025,54(4):91-100.

    24. [24]

      YU F,ZHAO X R,WANG Z W,et al.Recent advances in the physicochemical properties and biotechnological application of Vitreoscilla hemoglobin[J].Microorganisms,2021,9(7):1455.

    25. [25]

      王冰冰.重组色氨酸羟化酶的改造及多酶级联高效合成5-羟基色氨酸[D].无锡:江南大学,2024. WANG B B.Engineering of recombinant tryptophan hydroxylase and efficient multienzyme cascade synthesis of 5-hydroxytryptophan[D].Wuxi:Jiangnan University,2024.

    26. [26]

      陈春岑.开发多酶级联催化体系实现萜类化合物的绿色合成[D].武汉:华中农业大学,2024. SHEN C C.Development of multi-enzyme cascade system for green synthesis of terpenes[D].Wuhan:Huazhong Agricultural University,2024.

    27. [27]

      HOU Y,GAO B,CUI J D,et al.Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst[J].Bioresource Technology,2019,287:121423.

    28. [28]

      刘周玭,王淼.生物转化合成苯乳酸工程菌的培养条件优化[J].工业微生物,2019,49(4):8-15.
      LIU Z P,WANG M.Optimization of culture conditions for phenyllactic acid-producing engineering bacteria[J].Industrial Microbiology,2019,49(4):8-15.

    29. [29]

      KAWAGUCHI H,MIYAGAWA H,NAKAMURA-TSURUTA S,et al.Enhanced phenyllactic acid production in Escherichia coli via oxygen limitation and shikimate pathway gene expression[J].Biotechnology Journal,2019,14(6):1800478.

    30. [30]

      WANG X T,HOU Y,LIU L,et al.A new approach for ecient synthesis of phenyllactic acid from L-phenylalanine:Pathway design and cofactor engineering[J].Journal of Food Biochemistry,2018,42(5):e12584.

    31. [31]

      HOU Y,ZHAO W Y,DING X C,et al.Co-production of 7-chloro-tryptophan and indole pyruvic acid based on an efficient FAD/FADH2 regeneration system[J].AppliedMicrobiology and Biotechnology,2023,107(15):4873-4885.

    32. [32]

      邓发军,潘宇,常飞,等.β-葡萄糖苷酶与透明颤菌血红蛋白在大肠杆菌中的共表达[J].生物工程学报,2018,34(3):379-388.
      DENG F J,PAN Y,CHANG F,et al.Co-expression of β-glucosidase and Vitreoscilla hemoglobin in Escherichia coli[J].Chinese Journal of Biotechnology,2018,34(3):379-388.

    33. [33]

      邵宇,张显,胡孟凯,等.重组大肠杆菌全细胞催化合成L-苯乳酸[J].食品与发酵工业,2021,47(14):1-8.
      SHAO Y,ZHANG X,HU M K,et al.Synthesis of L-phenyllactic acid catalyzed by recombinant Escherichia coli whole cell biotransformation[J].Food and Fermentation Industries,2021,47(14):1-8.

    34. [34]

      王亚丽,刘秀霞,杨艳坤,等.基于3A组装的多拷贝基因策略优化重组水蛭素变体Ⅲ的生产[J].食品与发酵工业,2023,49(16):1-8.
      WANG Y L,LIU X X,YANG Y K,et al.Efficient production of Rhv3 using a multi-copy gene strategy based on 3A assembly[J].Food and Fermentation Industries,2023,49(16):1-8.

    35. [35]

      王星,韩伟,刘艳芳,等.灵芝三萜生物合成途径与溶氧调控液态发酵的研究进展[J].微生物学通报,2025,52(11):4914-4926.
      WANG X,HAN W,LIU Y F,et al.Biosynthetic pathways of triterpenoids in Ganoderma lingzhi and dissolved oxygen control in liquid fermentation:A review[J].Microbiology China,2025,52(11):4914-4926.

    36. [36]

      徐康,侯运华,赵建志.酿酒酵母工业菌株中Ⅱ型启动子介导sgRNA表达的CRISPR/Cas9基因编辑系统的优化[J].齐鲁工业大学学报,2024,38(6):24-32.
      XU K,HOU Y H,ZHAO J Z.Optimization of a CRISPR/Cas9 gene editing system for type Ⅱ promoter-mediated sgRNA expression in industrial strains of Saccharomyces cerevisiae[J].Journal of Qilu University of Technology,2024,38(6):24-32.

Article Metrics

Article views(118) PDF downloads(0) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return