JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 29 Issue 1
January 2014
Article Contents
YAO Li-na, TIAN Gui-hua, YE Meng-meng, et al. Current situation and prospect of DNA strand displacement technology[J]. Journal of Light Industry, 2014, 29(1): 15-21. doi: 10.3969/j.issn.2095-476X.2014.01.003
Citation: YAO Li-na, TIAN Gui-hua, YE Meng-meng, et al. Current situation and prospect of DNA strand displacement technology[J]. Journal of Light Industry, 2014, 29(1): 15-21. doi: 10.3969/j.issn.2095-476X.2014.01.003 shu

Current situation and prospect of DNA strand displacement technology

  • Received Date: 2013-11-15
  • DNA strand displacement as a new kind of technology has been used in the construction of artificial biochemical logic circuit depending on the DNA molecular component.The research progress of DNA strand displacement technology in many fields was reviewed, including logic gate operation model, biochemical logic circuit and neural network, DNA nanorobotics, DNA reaction network and so on.The related applications of DNA strand displacement technology obtained experimental verification through the design and the simulation of half adder/full adder and encoder logic operation models.Based on these,it was put forward that constructing dynamic and functional nanomachines, integrating DNA logic gates and building DNA computer system structure were to be the development direction of application of DNA strand displacement technology.
  • 加载中
    1. [1]

      Zhang D Y,Winfree E.Control of DNA strand displacement kinetics using toehold exchange[J].Journal of the American Chemical Society,2009,131(47):17303.

    2. [2]

      Zhang D Y.Towards domain-based sequence design for DNA strand displacement reactions[C]//DNA Computing and Molecular Programming,Berlin:Springer,2011:162.

    3. [3]

      Yurke B,Mills A P.Using DNA to power nanostructures[J].Genetic Programming Evolvable Machines,2003(4):111.

    4. [4]

      Zhang D Y,Seelig G.Dynamic DNA nanotechnology using strand-displacement reactions[J].Nature Chemistry,2011,3(2):103.

    5. [5]

      Mao C,LaBean T H,Reif J H,et al.Logical computation using algorithmic self-assembly of DNA triple-crossover molecules[J].Nature,2000,407(6803):493.

    6. [6]

      Wang Y F,Sun J W,Zhang X C,et al.Half adder and half subtractor operations by DNA self-assembly[J].Journal of Computational and Theoretical Nanoscience,2011,8(7):1288.

    7. [7]

      Wang Y F,Sun J W,Zhang X C,et al.Full adder and full [JP2] subtractor operations by DNA self-assembly[J].Advanced Science Letters,2011,4(2):383.

    8. [8]

      Benenson Y,Paz-Elizur T,Adar R,et al.Programmable and autonomous computing machine made of biomolecules[J].Nature,2001,414(6862):430.

    9. [9]

      Stojanovic M N,Mitchell T E,Stefanovic D.Deoxyribozyme-based logic gates[J].Journal of the American Chemical Society,2002,124(14):3555.

    10. [10]

      Penchovsky R,Breaker R R.Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes[J].Nature Biotechnology,2005,23(11):1424.

    11. [11]

      Seelig G,Soloveichik D,Zhang D Y,et al.Enzyme-free nucleic acid logic circuits[J].Science,2006,314(5805):1585.

    12. [12]

      Zhang C,Ma L N,Dong Y F,et al.Molecular logic computing model based on DNA self-assembly strand branch migration[J].Chinese Science Bulletin,2013,58(1):32.

    13. [13]

      Li W,Yang Y,Yan H,et al.Three-input majority logic gate and multiple input logic circuit ased on DNA strand displacement[J].Nano Lett,2013,13(6):2980.

    14. [14]

      Qian L L,Winfree E.A simple DNA gate motif for synthesizing large-scale circuits[J].J R Soc Interface,2011,8(62):1281.

    15. [15]

      Qian L L,Winfree E.Scaling up digital circuit computation with DNA strand displacement cascades[J].Science,2011,332(6034):1196.

    16. [16]

      Qian L L,Winfree E,Bruck J.Neural network computation with DNA strand displacement cascades[J].Nature,2011,475(7356):368.

    17. [17]

      Yurke B,Turberfield A J,Mills A P,et al.A DNA-fuelled molecular machine made of DNA[J].Nature,2000,406(6796):605.

    18. [18]

      Yan H,Zhang X P,Shen Z Y,et al.A robust DNA mechanical device controlled by hybridization topology[J].Nature,2002,415(6867):62.

    19. [19]

      Chakraborty B,Sha R,Seeman N C.A DNA-based nanomechanical device with three robust states[J].Proc Natl Acad USA,2008,105(45):17245.

    20. [20]

      Shin J S,Pierce N A.A synthetic DNA walker for molecular transport[J].Journal of the American Chemical Society,2004,126(35):10834.

    21. [21]

      Lund K,Manzo A J,Dabby N,et al.Molecular robots guided by prescriptive landscapes[J].Nature,2010,465(7295):206.

    22. [22]

      Gu H Z,Chao J,Xiao S J,et al.A proximity-based programmable DNA nanoscale assembly line[J].Nature,2010,465(7295):202.

    23. [23]

      Santini C C,Bath J,Turberfield A J,et al.A DNA network as an information processing system[J].Int J Mol Sci,2012,13(4):5125.

Article Metrics

Article views(8678) PDF downloads(229) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return