JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 29 Issue 4
July 2014
Article Contents
YUE Yi-meng. Optimal dividend strategies in a Cramer-Lundberg model with transaction and administration costs[J]. Journal of Light Industry, 2014, 29(4): 100-104. doi: 10.3969/j.issn.2095-476X.2014.04.023
Citation: YUE Yi-meng. Optimal dividend strategies in a Cramer-Lundberg model with transaction and administration costs[J]. Journal of Light Industry, 2014, 29(4): 100-104. doi: 10.3969/j.issn.2095-476X.2014.04.023 shu

Optimal dividend strategies in a Cramer-Lundberg model with transaction and administration costs

  • Received Date: 2014-04-30
    Available Online: 2014-07-15
  • Considering the Cramer-Lundberg model with dividend payments and capital injections in the presence of both transaction and administration costs,in order to maximize the discounted dividend payments minus the penalized discounted capital injections and the costs,by stochastic control theory and the corresponding Hamilton-Jacobi-Bellman equation,a method to determine numerically the solution to the integro-differential equation was derived and showed that the optimal strategy was band type.This conclusion which put forwords the theory of former researchers was widely used,and made the risk model more realistic.
  • 加载中
    1. [1]

      Schmidli H.Optimal dividend strategies in a Cramer-Lundberg modelwith capital injections[J].Insurance:Mathematics and Economics,2008(5):1.

    2. [2]

      Scheer N,Schmidli H.Optimal dividend strategies in a Cramer-Lundbergmodel with capital injections and administration costs[J].European Actuarial Journal,2011,1(1):57.

    3. [3]

      Li Y,Liu G X.Optimal dividend and capital injection strategies Cramer-Lundbergmodel with minimal reserve requirement[C]//Proeeeding of the 4th International Conference on Optimization and Control with Applications(OCA2009),[s.l.]:[s.n.],2009:257-285.

    4. [4]

      Hunting M,Paulsen J.Optimal dividend policies with transaction costs for a class of jump-diffusion processes[J].Finance and Stochastics,2013,17(1):73.

    5. [5]

      Zhu J.Optimal dividend control for a generalized risk model with investment incomes and debit interest[J].Scandinavian Actuarial Journal,2013(2):140.

    6. [6]

      Eisenberg J,Schmidli H.Optimal control of capital injections by reinsurance in a diffusion approximation[J].Blätter der DGVFM,2009,30(1):1.

    7. [7]

      Eisenberg J,Schmidli H.Minimising expected discounted capital injections by reinsurance in a classical risk model[J].Scandinavian Actuarial Journal,2011,(3):155.

    8. [8]

      Albrecher H,Thonhauser S.Optimality results for dividend problems in insurance[J].Rev R Acad Cien Serie A Math,2009,103(2):295.

    9. [9]

      Azcue P,Muler N.Optimal reinsurance and dividend distribution policies in the Cramer-Lundberg model[J].Math Finance,2005,15(2):261.

    10. [10]

      Paulsen J.Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs[J].SIAM J Control Optim,2008,47(5):2201.

    11. [11]

      Bayraktar E,Kyprianou A E,Yamazaki K.Optimal dividends in the dual model under transaction costs[J].Insurance:Mathematics and Economics,2014,54:133.

Article Metrics

Article views(1226) PDF downloads(41) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return