JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 30 Issue 3-4
September 2015
Article Contents
FENG Jing-mei and LU Nan. Solving absolute value equations based on genetic simulated annealing algorithm[J]. Journal of Light Industry, 2015, 30(3-4): 161-164. doi: 10.3969/j.issn.2095-476X.2015.3/4.034
Citation: FENG Jing-mei and LU Nan. Solving absolute value equations based on genetic simulated annealing algorithm[J]. Journal of Light Industry, 2015, 30(3-4): 161-164. doi: 10.3969/j.issn.2095-476X.2015.3/4.034 shu

Solving absolute value equations based on genetic simulated annealing algorithm

  • Corresponding author: LU Nan, 
  • Received Date: 2014-12-18
    Available Online: 2015-09-15
  • Combining the global search ability of genetic algorithm and the local refinement ability of simulated annealing algorithm,a new kind of genetic simulated annealing algorithm was designed.The algorithm was used for solving a class of no differentiable NP-hard problem:Absolute value equations Ax-|x|=b.Numerical experiments showed that the algorithm could effectively overcome the shortcomings that the genetic algorithm was easy to premature and simulated annealing algorithm had low efficiency of operation.
  • 加载中
    1. [1]

      Mangasarian O L,Meyer R R.Absolute value equations[J].Linear Algebra and Its Application,2006,419(5):359.

    2. [2]

      Rohn J.An algorithm for computing all solutions of an absolute value equation[J].Optimization Letters,2012,6(5):851.

    3. [3]

      Hu S L,Huang Z H.A note onabsolute value equations[J].Optimization Letters,2009,4(3):417.

    4. [4]

      Hu S L,Huang Z H,Zhang Q.A generalized Newton method for absolute value equation associated with second order cones[J].Computational Optimaization and Applications,2011,235:1490.

    5. [5]

      Yong L Q,Liu S Y,Feng Q X,et al.Hybrid differential evolution with biogeography-based optimization for absolute value equation[J].Journal of Information & Computational Science,2013,10(8):2417.

    6. [6]

      李国成,肖庆宪.绝对值方程的交叉熵蝙蝠算法求解[J].计算机应用研究,2014,28(10):2966.

    7. [7]

      刘佳,梁秋丽,王书青,等.基于模拟退火算法的萤火虫群优化算法研究[J].计算机仿真,2014,31(5):284.

    8. [8]

      刘波,孟培生.采用基于模拟退火的蚁群算法求解旅行商问题[J].华中科技大学学报:自然科学版,2009,37(11):26.

    9. [9]

      卢莉蓉,行小帅,霍冰鹏.基于免疫规划的模拟退火算法[J].计算机工程,2007,33(10):196.

    10. [10]

      梁衡,刘新新,郑远攀,等.基于退火遗传算法的无线传感器网络路由优化研究[J].郑州轻工业学院学报:自然科学版,2012,27(6):93.

    11. [11]

      梁艳春,吴春国,时小虎,等.群智能优化算法理论与应用[M].北京:北京科学技术出版社,2009:1-33.

    12. [12]

      陈宝林.最优化理论与算法[M].2版.北京:清华大学出版社,2005:349-359.

    13. [13]

      史峰, 王辉, 胡斐, 等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011.

Article Metrics

Article views(876) PDF downloads(46) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return