JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 30 Issue 5-6
November 2015
Article Contents
WANG Xiao, YANG Peng-peng, WANG Rong and et al. Predicting functional types of antimicrobial peptides with pseudo amino acid composition and multi-label k-nearest neighbor algorithm[J]. Journal of Light Industry, 2015, 30(5-6): 85-87. doi: 10.3969/j.issn.2095-476X.2015.5/6.017
Citation: WANG Xiao, YANG Peng-peng, WANG Rong and et al. Predicting functional types of antimicrobial peptides with pseudo amino acid composition and multi-label k-nearest neighbor algorithm[J]. Journal of Light Industry, 2015, 30(5-6): 85-87. doi: 10.3969/j.issn.2095-476X.2015.5/6.017 shu

Predicting functional types of antimicrobial peptides with pseudo amino acid composition and multi-label k-nearest neighbor algorithm

  • Received Date: 2015-09-28
    Available Online: 2015-11-15
  • In order to solve the problem that most of the existing computational methods can only predict one functional type of antibacterial peptides, a computational prediction method was developed for prediction of multiple functional types of antibacterial peptides based on the pseudo amino acid composition(PseAAC) and multi-label k-nearest neighbor(MLkNN) algorithm.It used the PseAAC to extract feature vector of antimicrobial peptide sequence, introduced the MLkNN algorithm as the prediction engine, and predicted a variety function type of antibacterial peptides simultaneously.Experimental results showed that the proposed method significantly improved the prediction performance, and it provided a useful tool for the further research in this field.
  • 加载中
    1. [1]

      Riadh H,Ismail F.Current trends in antimicrobial agent research:chemo-and bioinformatics approaches[J].Drug Discovery Today,2010,15(13/14):540.

    2. [2]

      Fjell C D,Hancock R E,Cherkasov A.AMPer:a database and an automated discovery tool for antimicrobial peptides[J].Bioinformatics,2007,23(9):1148.

    3. [3]

      Lata S,Sharma B K,Raghava G.Analysis and prediction of antibacterial peptides[J].BMC Bioinformatics,2007,8:263.

    4. [4]

      Lata S,Mishra N,Raghava G.AntiBP2:improved version of antibacterial peptide prediction[J].BMC Bioinformatics,2010,11(S1):S19.

    5. [5]

      Wang P,Hu L L,Liu G Y,et al.Prediction of antimicrobial peptides based on sequence alignment and feature selection methods[J].PLoS ONE,2011,6(4):e18476.

    6. [6]

      Khosravian M,Faramarzi F K,Beigi M M,et al.Predicting antibacterial peptides by the concept of Chou's pseudo-amino acid composition and machine learning methods[J].Protein and Peptide Letters,2013,20(2):180.

    7. [7]

      Xiao X,Wang P,Lin W Z,et al.iAMP-2L:a two-level multi-label classifier for identifying antimicrobial peptides and their functional types[J].Analytical Biochemistry,2013,436:168.

    8. [8]

      Chou K C.Prediction of protein cellular attributes using pseudo-amino acid composition[J].Proteins:Structure,Function,and Bioinformatics,2001,43(3):246.

    9. [9]

      Li G Z,Wang X,Hu X,et al.Multilabel learning for protein subcellular location prediction[J].IEEE Transactions on NanoBioscience,2012,11(3):237.

Article Metrics

Article views(1069) PDF downloads(32) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return