JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 31 Issue 6
December 2016
Article Contents
LIAO Yang and ZHOU Xiao-yu. A class of strongly damped nonlinear wave equation solution of N-demensional space and its properties[J]. Journal of Light Industry, 2016, 31(6): 95-99. doi: 10.3969/j.issn.2096-1553.2016.6.014
Citation: LIAO Yang and ZHOU Xiao-yu. A class of strongly damped nonlinear wave equation solution of N-demensional space and its properties[J]. Journal of Light Industry, 2016, 31(6): 95-99. doi: 10.3969/j.issn.2096-1553.2016.6.014 shu

A class of strongly damped nonlinear wave equation solution of N-demensional space and its properties

  • Received Date: 2015-04-13
    Accepted Date: 2016-07-28
    Available Online: 2016-12-15
  • The properties of three dimensional space solution of strongly damped nonlinear wave equation by 3D was expanded to N dimensional space (N>3).A standard Galerkin method and the Sobolev embedding theorem were utilized to study the existence of weak solution under the space. The inner product was used to make the solution's dissipation estimates,and the Gronwall lemma was used to prove the existence of the attractor.
  • 加载中
    1. [1]

      DELL'ORO F,PATA V.Long-term analysis of strongly damped nonlinear wave equations[J].Nonlinearity,2011,24(12):3413.

    2. [2]

      YANG Z J,GUO B.Cauchy problem for the multi-dimensional Boussinesq type equation[J].Journal of Mathematical Analysis and Applications,2008,340(1):64.

    3. [3]

      ANDREWS G,BALL J M.Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity[J].Journal of Differential Equations,1982,44(2):306.

    4. [4]

      COLEMAN B D,GURTIN M E.Equipresence and constitutive equations for rigid heat conductors[J].Zeitschrift Für Angewandte Mathematik und Physik ZAMP,1967,18(2):199.

    5. [5]

      YANG Z J.Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms[J].Mathematical Methods in the Applied Sciences,2002,25(10):795.

    6. [6]

      GREEN A E,NAGHDI P M.A unified procedure for construction of theories of deformable media.I.classical continuum physics[J].Proceedings of the Royal Society of London.Series A:Mathematical and Physical Sciences,1995,448(1934):335.

    7. [7]

      PATA V,ZELIK S.A remark on the damped wave equation[J].Communications on Pure and Applied Analysis,2006,5(3):611.

    8. [8]

      YANG Z J.Global attractors and their Hausdorff dimensions for a class of Kirchhoff models[J].Journal of Mathematical Physics,2010,51(3):2701.

    9. [9]

      DELL'ORO F.Global attractors for strongly damped wave equations with subcritical-critical nonlinearities[J].Communications on Pure & Applied Analysis,2013,12(2):.

    10. [10]

      EFENDIEV M,MIRANVILLE A,ZELIK S.Exponential attractors for a nonlinear reaction-diffusion system in R3[J].Comptes Rendus de l'Académie des Sciences (Series I) Mathematics,2000,330(8):713.

    11. [11]

      MIRANVILLE A,ZELIK S.Attractors for dissipative partial differential equations in bounded and unbounded domains[J].Handbook of Differential Equations:Evolutionary Equations,2008(4):103.

Article Metrics

Article views(748) PDF downloads(46) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return