JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 32 Issue 4
July 2017
Article Contents
CHENG Chun-rui, LI Qing-bin and MAO Bei-xing. Finite-time chaos synchronization control of a class of fractional order systems[J]. Journal of Light Industry, 2017, 32(4): 100-104. doi: 10.3969/j.issn.2096-1553.2017.4.015
Citation: CHENG Chun-rui, LI Qing-bin and MAO Bei-xing. Finite-time chaos synchronization control of a class of fractional order systems[J]. Journal of Light Industry, 2017, 32(4): 100-104. doi: 10.3969/j.issn.2096-1553.2017.4.015 shu

Finite-time chaos synchronization control of a class of fractional order systems

  • Received Date: 2016-07-23
    Accepted Date: 2017-03-09
    Available Online: 2017-07-15
  • The finite-time synchronization control problem of a class of fractional order chaos system was studied based on Lyapunov stability theory and fractional order system theory.Two sufficient conditions for fast synchronization of master-slave systems were gotten.Numerical simulation result verified the effectiveness of the proposed method.
  • 加载中
    1. [1]

      仲启龙,邵永辉,郑永爱.分数阶混沌系统的主动滑模同步[J].动力学与控制学报,2015,13(1):18.

    2. [2]

      胡玉婷,李东,张兴鹏.参数未知的分数阶混沌系统的自适应追踪控制[J].重庆工商大学学报(自然科学版),2015,32(3):1.

    3. [3]

      杨丽新,江俊.分数阶复杂网络系统的混合投影同步[J].动力学与控制学报,2015,13(1):52.

    4. [4]

      胡建兵,赵灵东.分数阶稳定性理论与控制研究[J].物理学报,2013,62(24):41.

    5. [5]

      陈荣旺,许碧荣.非线性耦合分数阶系统的异结构同步[J].集美大学学报(自然科学版),2014,19(5):381.

    6. [6]

      郝建红,宾虹,姜苏娜,等.分数阶线性系统稳定性理论在混沌同步中的简便应用[J].河北师范大学学报(自然科学版),2014,38(5):469.

    7. [7]

      辛道义,刘允刚.非线性系统有限时间稳定性分析与控制设计[J].山东大学学报(工学版),2011,41(2):119.

    8. [8]

      杨仁明,王玉振.一类非线性时滞系统的有限时间稳定性[J].山东大学学报(工学版),2012,42(2):36.

    9. [9]

      李洁,吴忠强.混沌系统的快速收敛有限时间滑模自适应控制[J].自动化仪表,2009,11(3):34.

    10. [10]

      MOHAMMAD P A.Robust finite-time stabilization of fractional-order chaotic susyems based on fractional Lyapunov stability theory[J].Journal of Computation and Nonlinear Dynamics,2012,7:1011.

    11. [11]

      毛北行,王东晓.一类复杂网络系统的有限时间混沌同步[J].华中师范大学学报(自然科学版),2015,49(4):538.

    12. [12]

      毛北行,张玉霞.具有非线性耦合复杂网络系统的有限时间混沌同步[J].吉林大学学报(理学版),2015,53(4):757.

    13. [13]

      PODLUBNY L.Fractional differential equation[M].San Diego:Academic Press,1999.

    14. [14]

      HARDY G,LITTLEWOOD J E,POLYA G.Inequalities[M].Cambridge: Cambridge University Press,1952.

Article Metrics

Article views(1659) PDF downloads(43) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return