JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展

陈迪明

陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
引用本文: 陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
Citation: CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005

多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展

  • 基金项目: 国家自然科学基金项目(21601160)

  • 中图分类号: O658

Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation

  • Received Date: 2017-04-24
    Available Online: 2017-09-15

    CLC number: O658

  • 摘要: 综述了具有气体吸附和分离功能的多尺度孔道型金属-有机框架(MOFs)材料的研究背景及其在CO2储存、分离和C2H2气体储存方面的应用.指出,具有不同孔道性质的MOFs材料对CO2的储存与分离及C2H2气体储存方面的影响不同,可以通过控制MOFs材料孔道的尺寸、形状、孔道内的官能团来准确地控制其性能;同时,借助单晶衍射技术与原位表征手段(例如原位粉末衍射及红外光谱)可以考察合成材料的构效关系,从而指导MOFs材料的性能优化.然而,部分MOFs材料的水稳定性较差,如果使用含有疏水基团的有机配体及高价态的金属簇(例如Cr3+,Zr4+等)作为MOFs分子基构筑单元的方式,有望增强MOFs材料的水稳定性;MOFs材料对专一气体的吸附选择性还有待提升,或可通过设计合成具有动态吸附行为的MOFs材料得以实现.此外,利用分子模拟技术,未来有望真正地将材料的结构与功能提到设计层面,以节约研究成本.
    1. [1]

      SEO J S,WHANG D,LEE H,et al.A homochiral metal-organic porous material for enantioselective separation and catalysis[J].Nature,2000,404(6781):982.

    2. [2]

      LI J R,SCULLEY J,ZHOU H C.Metal-organic frameworks for separations[J].Chemical Reviews,2011,112(2):869.

    3. [3]

      SONG L,ZHANG J,SUN L,et al.Mesoporous metal-organic frameworks:design and applications[J].Energy & Environmental Science,2012,5(6):7508.

    4. [4]

      JUAN-ALCAÑIZ J,GASCON J,KAPTEIJN F.Metal-organic frameworks as scaffolds for the encapsulation of active species:state of the art and future perspectives[J].Journal of Materials Chemistry,2012,22(20):10102.

    5. [5]

      SPOKOYNY A M,KIM D,SUMREIN A,et al.Infinite coordination polymer nano-and microparticle structures[J].Chem Soc Rev,2009,38(5):1218.

    6. [6]

      BUSER H J,SCHWARZENBACH D,PETTER W,et al.The crystal structure of Prussian blue:Fe4[Fe(CN)6]3·xH2O[J].Inorganic Chemistry,1977,16(11):2704.

    7. [7]

      HOSKINS B F,ROBSON R.Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J].Journal of the American Chemical Society,1989,111(15):5962.

    8. [8]

      YAGHI O M,LI H.Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J].Journal of the American Chemical Society,1995,117(41):10401.

    9. [9]

      KITAGAWA S,KONDO M.Functional micropore chemistry of crystalline metal complex-assembled compounds[J].Bulletin of the Chemical Society of Japan,1998,71(8):1739.

    10. [10]

      CHUI S S Y,LO S M F,CHARMANT J P H,et al.A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J].Science,1999,283(5405):1148.

    11. [11]

      YAGHI O M,O'KEEFFE M,OCKWIG N W,et al.Reticular synthesis and the design of new materials[J].Nature,2003,423(6941):705.

    12. [12]

      DU M,LI C P,LIU C S,et al.Design and construction of coordination polymers with mixed-ligand synthetic strategy[J].Coordination Chemistry Reviews,2013,257(7):1282.

    13. [13]

      DU M,CHEN M,WANG X,et al.Versatile mesoporous DyⅢ coordination framework for highly efficient trapping of diverse pollutants[J].Inorganic Chemistry,2014,53(14):7074.

    14. [14]

      DU M,WANG X,CHEN M,et al.Ligand symmetry modulation for designing a mesoporous metal-organic framework:dual reactivity to transition and lanthanide metals for enhanced functionalization[J].Chemistry-A European Journal,2015,21(27):9713.

    15. [15]

      CHEN M,ZHAO H,SAÑUDO E C,et al.Two isostructural coordination polymers showing diverse magnetic behaviors:weak coupling (niii) and an ordered array of single-chain magnets (CoⅡ)[J].Inorganic Chemistry,2016,55(8):3715.

    16. [16]

      LI C P,CHEN J,LIU C S,et al.Dynamic structural transformations of coordination supramolecular systems upon exogenous stimulation[J].Chem Commun,2015,51:2768.

    17. [17]

      DU M,CHEN M,YANG X G,et al.A channel-type mesoporous In (Ⅲ)-carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors[J].Journal of Materials Chemistry A,2014,2(25):9828.

    18. [18]

      CHEN M,SAÑUDO E C,JIMÉNEZ E,et al.Lanthanide-organic coordination frameworks showing new 5-connected network topology and 3D ordered array of single-molecular magnet behavior in the Dy case[J].Inorganic Chemistry,2014,53(13):6708.

    19. [19]

      LIU C S,CHEN M,TIAN J Y,et al.Metal-organic framework supported on processable polymer matrix by in situ copolymerization for enhanced iron (Ⅲ) detection[J].Chemistry-A European Journal,2017,23(16):3885.

    20. [20]

      LI J R,SCULLEY J,ZHOU H C.Metal-organic frameworks for separations[J].Chemical Reviews,2011,112(2):869.

    21. [21]

      DU M,LI C P,CHEN M,et al.Divergent kinetic and thermodynamic hydration of a porous Cu (Ⅱ) coordination polymer with exclusive CO2 sorption selectivity[J].Journal of the American Chemical Society,2014,136(31):10906.

    22. [22]

      CHEN M,ZHAO H,LIU C S,et al.Template-directed construction of conformational supramolecular isomers for bilayer porous metal-organic frameworks with distinct gas sorption behaviors[J].Chemical Communications,2015,51(27):6014.

    23. [23]

      CHEN D M,TIAN J Y,CHEN M,et al.Moisture-stable Zn (Ⅱ) metal-organic framework as a multifunctional platform for highly efficient CO2 capture and nitro pollutant vapor detection[J].ACS Applied Materials & Interfaces,2016,8(28):18043.

    24. [24]

      WANG X,CHEN M,DU M.A clear insight into the distinguishing CO2 capture by two isostructural DyⅢ-carboxylate coordination frameworks[J].Inorganic Chemistry,2016,55(13):6352.

    25. [25]

      CHEN D M,TIAN J Y,FANG S M,et al.Two isomeric Zn-based metal-organic frameworks constructed from a bifunctional triazolate-carboxylate tecton exhibiting distinct gas sorption behaviors[J].Cryst Eng Comm,2016,18(14):2579.

    26. [26]

      WU H,GONG Q,OLSON D H,et al.Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J].Chemical Reviews,2012,112(2):836.

    27. [27]

      PANG J,JIANG F,WU M,et al.A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions[J].Nature Communications,2015(6):7575.

    28. [28]

      CHEN D M,TIAN J Y,LIU C S,et al.Inside back cover:charge control in two isostructural anionic/cationic coii coordination frameworks for enhanced acetylene capture[J].Chemistry-A European Journal,2016,22(42):15151.

    29. [29]

      CHEN D M,TIAN J Y,LIU C S,et al.A bracket approach to improve the stability and gas sorption performance of a metal-organic framework via in situ incorporating the size-matching molecular building blocks[J].Chemical Communications,2016,52(54):8413.

    30. [30]

      CHEN D M,ZHANG N N,TIAN J Y,et al.Pore modulation of metal-organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets[J].Journal of Materials Chemistry A,2017,5(10):4861.

    31. [31]

      CHEN D M,TIAN J Y,LIU C S.Ligand symmetry modulation for designing mixed-ligand metal-organic frameworks:gas sorption and luminescence sensing properties[J].Inorganic Chemistry,2016,55(17):8892.

    32. [32]

      CHEN D M,ZHANG N N,LIU C S,et al.A mixed-cluster approach for building a highly porous cobalt (Ⅱ) isonicotinic acid framework:gas sorption properties and computational analyses[J].Inorganic Chemistry,2017,56(5):2379.

    33. [33]

      CHEN D M,ZHANG N N,TIAN J Y,et al.Quest for the Ncb-type metal-organic framework platform:a bifunctional ligand approach meets net topology needs[J].Inorg Chem,2017,56(13):7328.

    1. [1]

      李跑谭惠珍谢叔娥苏光林董怡青唐辉 . 基于近红外光谱技术有监督模式识别的青皮产地溯源分析. 轻工学报, 2024, 0(0): -.

  • 加载中
计量
  • PDF下载量:  112
  • 文章访问数:  8517
  • 引证文献数: 0
文章相关
  • 收稿日期:  2017-04-24
  • 刊出日期:  2017-09-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
引用本文: 陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005
Citation: CHEN Di-ming. Research progress of multi-scale porous metal-organic frameworks materials for gas storage and separation[J]. Journal of Light Industry, 2017, 32(5): 32-41. doi: 10.3969/j.issn.2096-1553.2017.5.005

多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展

  • 郑州轻工业学院 河南省表界面科学重点实验室, 河南 郑州 450001
基金项目:  国家自然科学基金项目(21601160)

摘要: 综述了具有气体吸附和分离功能的多尺度孔道型金属-有机框架(MOFs)材料的研究背景及其在CO2储存、分离和C2H2气体储存方面的应用.指出,具有不同孔道性质的MOFs材料对CO2的储存与分离及C2H2气体储存方面的影响不同,可以通过控制MOFs材料孔道的尺寸、形状、孔道内的官能团来准确地控制其性能;同时,借助单晶衍射技术与原位表征手段(例如原位粉末衍射及红外光谱)可以考察合成材料的构效关系,从而指导MOFs材料的性能优化.然而,部分MOFs材料的水稳定性较差,如果使用含有疏水基团的有机配体及高价态的金属簇(例如Cr3+,Zr4+等)作为MOFs分子基构筑单元的方式,有望增强MOFs材料的水稳定性;MOFs材料对专一气体的吸附选择性还有待提升,或可通过设计合成具有动态吸附行为的MOFs材料得以实现.此外,利用分子模拟技术,未来有望真正地将材料的结构与功能提到设计层面,以节约研究成本.

English Abstract

参考文献 (33) 相关文章 (1)

目录

/

返回文章