JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 34 Issue 3
May 2019
Article Contents
MA Jiming, CHEN Haoyang and ZHANG Song. Beetle antennae search algorithm based on chaotic disturbance mechanism and its application in image enhancement[J]. Journal of Light Industry, 2019, 34(3): 68-76. doi: 10.3969/j.issn.2096-1553.2019.03.008
Citation: MA Jiming, CHEN Haoyang and ZHANG Song. Beetle antennae search algorithm based on chaotic disturbance mechanism and its application in image enhancement[J]. Journal of Light Industry, 2019, 34(3): 68-76. doi: 10.3969/j.issn.2096-1553.2019.03.008 shu

Beetle antennae search algorithm based on chaotic disturbance mechanism and its application in image enhancement

  • Received Date: 2018-12-03
  • To solve the problem of slow convergence,low precision and poor global search effect of beetle antennae search algorithm (BAS), an improved beetle antennae search algorithm (CDBAS) based on chaotic disturbance mechanism was proposed.The algorithm disturbed the position of longicorn by chaotic mechanism, searched the region with large global fitness value first in iteration, and then searched in the region.Comparation of BAS and CDBAS with 7 test functions showed that CDBAS algorithm had better optimization performance, faster convergence speed and higher accuracy.The CDBAS algorithm was applied to image enhancement. The results showed that the enhancement effect of CDBAS algorithm was more obvious, the image was clearer and the hierarchical information was more abundant.
  • 加载中
    1. [1]

      李佩泽,王姗姗,樊岩.基于改进蝙蝠算法的背包问题求解[J].计算机应用研究,2015(11):3226.

    2. [2]

      冷昕,张树群,雷兆宜.改进的人工蜂群算法在神经网络中的应用[J].计算机工程与应用,2016,52(11):7.

    3. [3]

      程准,鲁植雄,唐迪,等.基于改进PSO算法的拖拉机驱动防滑PID控制策略[J].计算机应用研究,2017,34(1):83.

    4. [4]

      王晓东,张姣,薛红.基于蝙蝠算法的K均值聚类算法[J].吉林大学学报(信息科学版),2016,34(6):805.

    5. [5]

      费春,张萍,李建平.基于人工鱼群优化分块的多聚焦图像融合[J].强激光与粒子束,2015,27(1):1

    6. [6]

      MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69(3):46.

    7. [7]

      YANG X S,DEB S.Cuckoo search:recent advances and applications[J].Neural Computing and Applications,2014,24(1):169.

    8. [8]

      乔东平,裴杰,肖艳秋,等.蚁群算法及其应用综述[J].软件导刊,2017(12):217.

    9. [9]

      WU T Q,YAO M,YANG J H.Dolphin swarm algorithm[J].Frontiers of Information Technology & Electronic Engineering,2016,17(8):717.

    10. [10]

      JIANG X Y,LI S.BAS:Beetle antennae search algorithm for optimization problems[J].International Journal of Robotics and Control,2018,1(1):1.

    11. [11]

      李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997(4):613.

    12. [12]

      江铭炎,袁东风.人工蜂群算法及其应用[M].北京:科学出版社,2014.

    13. [13]

      ALATAS B.Chaotic bee colony algorithms for global numerical optimization[J].Expert Systems with Applications,2010,37(8):5682.

    14. [14]

      TUBBS J D.A note on parametric image enhancement[J].Pattern Recognition,1987, 20(6):617.

Article Metrics

Article views(1585) PDF downloads(38) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return