JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

Volume 34 Issue 3
May 2019
Article Contents
NIE Hui, ZHANG Shuyi and ZHANG Xinyu. Again study the asymptotic behavior and the differentiability of intermediate point function for high order Cauchy mean value theorem[J]. Journal of Light Industry, 2019, 34(3): 92-102. doi: 10.3969/j.issn.2096-1553.2019.03.011
Citation: NIE Hui, ZHANG Shuyi and ZHANG Xinyu. Again study the asymptotic behavior and the differentiability of intermediate point function for high order Cauchy mean value theorem[J]. Journal of Light Industry, 2019, 34(3): 92-102. doi: 10.3969/j.issn.2096-1553.2019.03.011 shu

Again study the asymptotic behavior and the differentiability of intermediate point function for high order Cauchy mean value theorem

  • Received Date: 2018-06-12
  • By using the concept of comparison function, the asymptotic behavior of the intermediate point function of the high order Cauchy mean value theorem was studied. Under certain conditions, a broader asymptotic estimate of the intermediate point function of the high order Cauchy mean value theorem was established. The first-order differentiability of the intermediate point function of the high order Cauchy mean value theorem was obtained. The obtained results generalized and improved the results in the relevant literature,and enriched the theory of the median theorem.
  • 加载中
    1. [1]

      AZPEITJA A G.On the Lagrange remainder of the Taylor formula[J].Amer Math Monthly,1982,89(5):311.

    2. [2]

      JACOBSON B.On the mean value theorem for integrals[J].Amer Math Monthly,1982,89(5):300.

    3. [3]

      DUCA D I,POP O.On the intermediate point in Cauchy's mean-value theorem[J].Math Inequal Appl,2006,9:375.

    4. [4]

      张树义.广义Taylor公式"中间点"一个更广泛的渐近估计式[J].数学的实践与认识,2004,34(11):173.

    5. [5]

      张树义.积分中值定理"中间点"更广泛的渐近估计式[J].南阳师范学院学报,2005(3):15.

    6. [6]

      万美玲,张树义.二元函数Taylor公式"中间点"的渐近估计式[J].鲁东大学学报(自然科学版),2016,32(2):1.

    7. [7]

      张树义.关于中值定理"中间点"渐近性的若干注记[J].烟台师范学院学报(自然科学版),1994,10(2):105.

    8. [8]

      张树义,赵美娜,郑晓迪.积分中值定理中间点的渐近估计式[J].北华大学学报(自然科学版),2016,17(4):448.

    9. [9]

      POWERS R C,RIEDEL T,SAHOO P K.Limit properties of differential mean values[J].J Math Anal Appl,1998,227:216.

    10. [10]

      张树义.关于"中间点"渐近性的两个结果[J].辽宁师范大学学报(自然科学版),1995,18(2):109.

    11. [11]

      李元中,冯汉桥.关于高阶Lagrange中值定理"中间点"的渐近性[J].数学杂志,1991,11(3):298.

    12. [12]

      张树义,丛培根,郑晓迪.高阶Cauchy中值定理中间点函数的性质[J].北华大学学报(自然科学版),2017,18(1):19.

    13. [13]

      丛培根,张树义.关于高阶Cauchy中值定理中间点函数可微性的进一步研究[J].南通大学学报(自然科学版),2018,17(1):90.

    14. [14]

      李丹,张树义,郑晓迪.Cauchy中值定理"中间点函数"的一个注记[J].南阳师范学院学报(自然科学版),2016,15(12):5.

    15. [15]

      张树义,林媛,郑晓迪.广义中值定理中间点函数的性质[J].北华大学学报(自然科学版),2016,17(6):714.

    16. [16]

      刘冬红,张树义,郑晓迪.二元函数柯西中值定理"中间点"的渐近估计式[J].井冈山大学学报(自然科学版),2017,38(4):13.

    17. [17]

      李丹,张树义.关于泰勒公式中间点函数的可微性[J].井冈山大学学报(自然科学版),2016,37(6):11.

    18. [18]

      刘冬红,张树义,丛培根.积分中值定理中间点函数的性质[J].北华大学学报(自然科学版),2017,18(4):434.

    19. [19]

      赵美娜,张树义,郑晓迪.广义Taylor中值定理"中间点函数"的性质[J].南通大学学报(自然科学版),2016,15(3):80.

    20. [20]

      赵美娜,张树义,郑晓迪.泰勒公式"中间点函数"的一个注记[J].鲁东大学学报(自然科学版),2016, 32(4):302.

    21. [21]

      伍建华,孙霞林,熊德之.一类积分型中值定理的渐近性讨论[J].西南师范大学学报,2012,37(8):24.

Article Metrics

Article views(1224) PDF downloads(24) Cited by()

Ralated
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return