JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

F值寡肽的功能特性研究进展

秦于思 程明 韦海涛 高兴明 范小雪 王存芳

秦于思, 程明, 韦海涛, 等. 高F值寡肽的功能特性研究进展[J]. 轻工学报, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004
引用本文: 秦于思, 程明, 韦海涛, 等. 高F值寡肽的功能特性研究进展[J]. 轻工学报, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004
QIN Yusi, CHENG Ming, WEI Haitao, et al. Research progress in functional characteristics of high Fisher ratio oligopeptides[J]. Journal of Light Industry, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004
Citation: QIN Yusi, CHENG Ming, WEI Haitao, et al. Research progress in functional characteristics of high Fisher ratio oligopeptides[J]. Journal of Light Industry, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004

F值寡肽的功能特性研究进展

    作者简介: 秦于思(1996-),女,山东省日照市人,齐鲁工业大学硕士研究生,主要研究方向为乳品科学.;
  • 基金项目: 山东省重点研发计划项目(2019YYSP025);山东省自然科学基金项目(ZR2020MC210);山东省农业重大应用技术创新项目(SD2019ZZ006);国家级大学生创新创业训练计划项目(201910431002)

  • 中图分类号: TS201.1

Research progress in functional characteristics of high Fisher ratio oligopeptides

  • Received Date: 2020-07-03

    CLC number: TS201.1

  • 摘要:F值寡肽因其独特的氨基酸组成而具有多种生理活性,通过对其功能特性及活性机理相关文献进行梳理,指出:高F值寡肽具有良好的抗疲劳和解醉酒功能特性,可作为生物活性肽应用于抗疲劳饮料、醒酒汤等功能性产品的开发;高F值寡肽在辅助治疗肝病、促进肝病患者体内F值回到正常范围等方面具有重要作用,但对肝病的影响机制尚不明确,需进一步的研究验证;高F值寡肽可调节体内苯丙氨酸代谢,开发高F值寡肽的医药食品将成为苯丙酮尿症(PKU)食疗的发展方向之一.未来可就高F值寡肽在医用食品中的消化特性和适用性、益生功能特性、加工过程中与其他食品组分的相互作用及对食品品质特性的影响等方面开展深入研究,以进一步拓展高F值寡肽在医用食品行业中的应用.
    1. [1]

      LI T,TIAN Y,SUN F,et al.Preparation of high Fischer's ratio corn oligopeptides using directed enzymatic hydrolysis combined with adsorption of aromatic amino acids for efficient liver injury repair[J].Process Biochemistry,2019,84:60.

    2. [2]

      TANIMOTO S,TANABE S,WATANABE M,et al.Enzymatic modification of zein to produce a non-bitter peptide fraction with a very high Fischer ratio for patients with hepatic encephalopathy(food & nutrition)[J].Agricultural and Biological Chemistry,1991,55(4):1119.

    3. [3]

      ADACHI S,YAMANAKA T,HAYASHI S,et al.Preparation of peptide mixture with high Fischer ratio from protein hydrolysate by adsorption on activated carbon[J].Bioseparation,1992,3(4):227.

    4. [4]

      PEDROCHE J,YUST M M,LQARI H,et al.Production and characterization of casein hydrolysates with a high amino acid Fischer's ratio using immobilized proteases[J].International Dairy Journal,2004,14(6):527.

    5. [5]

      PEDROCHE J,YUST M D M,LQARI H,et al.Production of brassica carinata protein hydrolyzates with a high Fischer's ratio using immobilized proteases[J].Journal of Agricultural and Food Chemistry,2007,54(20):7621.

    6. [6]

      陶静,丁冬各,陈荫,等.带鱼高F值寡肽的制备工艺及活性[J].水产学报,2018,42(10):1648.

    7. [7]

      祁文翰.鱿鱼高F值寡肽制备优化及工厂设计[D].舟山:浙江海洋大学,2017.

    8. [8]

      ZHENG H N,ZHANG C H,CAO W H,et al.Preparation and characterisation of the pearl oyster (Pinctada martensii) meat protein hydrolysates with a high Fischer ratio[J].International Journal of Food Science and Techno-logy,2009,44(6):1183.

    9. [9]

      杨华青,侯威,赵磊,等.玉米黄粉二步酶解制备高F值寡肽的工艺优化[J].食品科学技术学报,2019,37(6):100.

    10. [10]

      蒋竹青,李萍,张明振,等.玉米高F值寡肽的分离纯化及抗氧化活性研究[J].食品与药品,2014,16(6):397.

    11. [11]

      金英姿,王大为.玉米高F值寡肽的制备研究[J].食品研究与开发,2014,35(11):80.

    12. [12]

      杨秀芝,王艳,杨安树,等.双酶水解对豆芽蛋白潜在致敏性和理化性质的影响[J].南昌大学学报(理科版),2018,42(6):563.

    13. [13]

      秦于思,程明,陈平华,等.基于乳源性蛋白制备高F值寡肽的研究进展[J].乳业科学与技术,2020,43(6):31.

    14. [14]

      玄依凡,王荣春.乳清蛋白水解方法的比较研究[J].食品工业,2017,38(3):239.

    15. [15]

      韦荣编,黄程,罗红宇,等.食物源蛋白高F值寡肽的制备及应用研究进展[J].食品科学,2014,35(15):289.

    16. [16]

      LIN Y T,CHIU M S,CHANG C K.Branched-chain amino acids and arginine improve physical but not skill performance in two consecutive days of exercise[J].Science & Sports,2017,32(6).

    17. [17]

      CHEN I F,WU H J,CHEN C Y,et al.Branched-chain amino acids,arginine,citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes:a randomized controlled trial[J].Journal of the International Society of Sports Nutrition,2016,13(1):28.

    18. [18]

      TOMASZ M,JAN D,WOJCIECH H,et al.Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men[J].Folia Neuropathologica,2015,53(4):377.

    19. [19]

      FERNSTROM J D.Branched-chain amino acids and brain function[J].The Journal of Nutrition,2005,135(6):1539S.

    20. [20]

      NEWSHOLME E A,BLOMSTRAND E.Branched-chain amino acids and central fatigue[J].Journal of Nutrition,2006,136(1):274S.

    21. [21]

      MEEUSEN R,WATSON P.Amino acids and the brain:do they play a role in "central fatigue"?[J].International Journal of Sport Nutrition and Exercise Metabolism,2007,17(S1):S37.

    22. [22]

      CHEN Y M,LIN C L,WEI L,et al.Sake protein supplementation affects exercise performance and biochemical profiles in power-exercise-trained mice[J].Nutrients,2016,8(2):106.

    23. [23]

      陈星星,胡晓,李来好,等.抗疲劳肽的研究进展[J].食品工业科技,2015,36(4):365.

    24. [24]

      张铁华,殷涌光,刘静波,等.高F值寡肽抗疲劳作用的研究及其饮料的开发[J].食品科学,2007(5):308.

    25. [25]

      李润国,庞文渌.酶解法制备花生粕高F值寡肽混合物及其缓解疲劳作用的研究[J].粮油食品科技,2015,23(1):43.

    26. [26]

      丁运文,汤兴俊,陈心馨,等.解酒护肝饮解酒及对急慢酒精性肝损伤的保护作用[J].基因组学与应用生物学,2019,38(5):2276.

    27. [27]

      丁运文.解酒护肝饮解酒及对急慢酒精性肝损伤保护作用的研究[D].上海:上海交通大学,2018.

    28. [28]

      郑明洋.玉米高F值寡肽的制备及生理功能研究[D].济南:济南大学,2013.

    29. [29]

      曾瑜,潘兴昌,张立实,等.小麦低聚肽对小鼠解酒功能的评价[J].现代预防医学,2019,46(7):1255.

    30. [30]

      黄程,杜帅,宋茹,等.鲣鱼肉高F值寡肽液的生理活性研究[J].食品工业,2015,36(3):246.

    31. [31]

      蒋竹青.玉米高F值寡肽的制备及生理功能研究[D].济南:济南大学,2015.

    32. [32]

      TAJIRI K.Branched-chain amino acids in liver diseases[J].World Journal of Gastroenterology,2013,19(43):7620.

    33. [33]

      AKITOSHI S,EIJI K,TATSUKI M,et al.The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease:a single-center retrospective study[J].Journal of Gastroenterology,2018,53(8):978.

    34. [34]

      JUNGGIL P,WONYOUNG T,SOOYOUNG P,et al.Effects of branched-chain amino acid (BCAA) supplementation on the progression of advanced liver disease:a korean nationwide,multicenter,prospective,observational,cohort study[J].Nutrients,2020,12(5):1429.

    35. [35]

      SUGIYAMA K,YU L,NAGASUE N.Direct effect of branched-chain amino acids on the growth and metabolism of cultured human hepatocellular carcinoma cells[J].Nutrition and Cancer,1998,31(1):62.

    36. [36]

      KAWAGUCHI T,TORIMURA T.Branched chain amino acids:a factor for zone 3 steatosis in non-alcoholic fatty liver disease[J].Hepatology Research,2019,49(8):841.

    37. [37]

      简清.支链氨基酸肠内营养制剂对肝功能损害患者的影响[J].蛇志,2015,27(3):258.

    38. [38]

      KAKAZU E,SANO A,MOROSAWA T,et al.Branched chain amino acids are associated with the heterogeneity of the area of lipid droplets in hepatocytes of patients with non-alcoholic fatty liver disease[J].Hepatology Research,2019,49(8):860.

    39. [39]

      TOMIYA T,OMATA M,FUJIWARA K.Significance of branched chain amino acids as possible stimulators of hepatocyte growth factor[J].Biochemical and Biophysical Research Communications,2004,313(2):411.

    40. [40]

      KAWAGUCHI T,IZUMI N,CHARLTON M,et al.Branched-chain amino acids as pharmacological nutrients in chronic liver disease[J].Hepatology,2011,54(3):1063.

    41. [41]

      SORANOBU N,MASAHITO S,KENJI I,et al.Possible role of visfatin in hepatoma progression and the effects of branched-chain amino acids on visfatin-induced proliferation in human hepatoma cells[J].Cancer Prevention Research,2011,4(12):2092.

    42. [42]

      LUO J.Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy[J].Cancer Letters,2009,273(2):194.

    43. [43]

      DESBOIS-MOUTHON C,VAN EGGELPOË M J B,BEUREL E,et al.Dysregulation of glycogen synthase kinase-3β signaling in hepatocellular carcinoma cells[J].Hepatology,2002,36(6):1528.

    44. [44]

      SUZUKI K,SUZUKI K,KOIZUMI K,et al.Measurement of serum branched-chain amino acids to tyrosine ratio level is useful in a prediction of a change of serum albumin level in chronic liver disease[J].Hepatology Research,2008,38(3):267.

    45. [45]

      KAKAZU E,KANNO N,UENO Y,et al.Extracellular branched-chain amino acids,especially valine,regulate maturation and function of monocyte-derived dendritic cells[J].The Journal of Immunology,2007,179(10):7137.

    46. [46]

      KAKAZU E,UENO Y,KONDO Y,et al.Branched chain amino acids enhance the maturation and function of myeloid dendritic cells ex vivo in patients with advanced cirrhosis[J].Hepatology,2009,50(6):1936.

    47. [47]

      NAKAMURA I,OCHIAI K,MORIYASU F,et al.Restoration of innate host defense responses by oral supplementation of branched-chain amino acids in decompensated cirrhotic patients[J].Hepatology Research,2007,37(12):1062.

    48. [48]

      HAGIWARA A,NISHIYAMA M,ISHIZAKI S.Branched-chain amino acids prevent insulin-induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2-dependent mechanisms[J].Journal of cellular physiology,2012,227(5):2097.

    49. [49]

      KNERR I.Chapter 21-amino acid-related diseases[M]//DARDEVET D.The molecular nutrition of amino acids and proteins.Pittsburgh:Academic Press,2016:305-314.

    50. [50]

      朱晓涵.苯丙酮尿症的致病机理与防治措施研究[J].化工中间体,2018(9):187.

    51. [51]

      林明,张沙,肖军军,等.高苯丙氨酸血症控制期患者血清氨基酸测定结果与正常人群的比较[C]//中国优生科学协会.高苯丙氨酸血症筛查治疗与康复学术研讨会资料汇编.北京:[出版者不详],2008:20-25.

    52. [52]

      张磊,徐晓恒,张思瑾.苯丙酮尿症的治疗研究进展[J].中国当代儿科杂志,2009,11(9):786.

    53. [53]

      LICHTER-KONECKI U,VOCKLEY J.Phenylketonuria:current treatments and future developments[J].Drugs,2019,79(5):495.

    54. [54]

      MACDONALD A,ROCHA J C,VAN RIJN M,et al.Nutrition in phenylketonuria[J].Molecular Genetics and Metabolism,2011,104:S10.

    55. [55]

      SARA G L,ALEJANDRA L M L,ISABEL I G,et al.Conventional phenylketonuria treatment[J].Journal of Inborn Errors of Metabolism and Screening,2016,4:1417.

    56. [56]

      NIU R Q,FENG W X.Research progress of phenylketonuria and its releveant treatment[J].Chinese Journal of New Drugs,2018,27(2):154.

    1. [1]

      宋丽丽霍姗浩胡冉冉赵鑫淼朱钰琪杨旭张志平魏涛 . 复合乳酸菌固态发酵对脱脂米糠理化性质、生物活性和功能特性的影响. 轻工学报, 2024, 39(3): 21-28. doi: 10.12187/2024.03.003

    2. [2]

      尹丽莎朱莹莹董吉林申瑞玲 . 超声处理对藜麦分离蛋白功能特性和微观结构的影响. 轻工学报, 2022, 37(2): 38-43. doi: 10.12187/2022.02.005

    3. [3]

      赵祥忠高云龙徐梦豪朱纪海 . 冰岛刺参生物活性成分及其功能活性研究进展. 轻工学报, 2022, 37(6): 11-17. doi: 10.12187/2022.06.002

    4. [4]

      杜磊 . 芹菜渣对Cu2+的吸附特性和吸附机理研究. 轻工学报, 2011, 26(5): 65-69. doi: 10.3969/j.issn.1004-1478.2011.05.017

    5. [5]

      吴澄宇李迎秋 . 韭花精油主成分对单增李斯特氏菌的抑菌活性和抑菌机理. 轻工学报, 2024, 39(2): 36-42. doi: 10.12187/2024.02.005

    6. [6]

      解晓翠常纪恒于川芳石中金盛培秀王兵 . 活性炭结构特性对烟气羰基物过滤效率的影响. 轻工学报, 2011, 26(5): 88-91,111. doi: 10.3969/j.issn.1004-1478.2011.05.022

    7. [7]

      徐清萍王语迟纵伟赵光远 . 高活性乳酸菌发酵型番茄酱生产工艺研究. 轻工学报, 2019, 34(4): 8-14. doi: 10.3969/j.issn.2096-1553.2019.04.002

    8. [8]

      徐秀娟洪祖灿柴国璧陈群杨春强操晓亮胡军张峰 . 基于香气活性值的烟草提取物成分分析及感官作用评价. 轻工学报, 2023, 38(2): 63-71. doi: 10.12187/2023.02.008

    9. [9]

      陈芝飞蔡莉莉陈小龙张玉霞马胜涛席高磊王清福张俊岭 . 基于香韵活性值的不同产地中间香型烤烟风格特征差异分析. 轻工学报, 2022, 37(1): 79-86. doi: 10.12187/2022.01.011

    10. [10]

      张志平段乃心魏湘楠段晨阳宋丽丽魏涛 . 基于光胁迫粘红酵母合成高值化类胡萝卜素发酵条件优化. 轻工学报, 2022, 37(4): 10-17. doi: 10.12187/2022.04.002

    11. [11]

      谷书华张文静王力臻张林森 . 锂离子电池石墨负极嵌脱锂机理研究. 轻工学报, 2012, 27(1): 4-6,19. doi: 10.3969/j.issn.1004-1478.2012.01.002

    12. [12]

      邵琳姜昱辰杨金溢李志涌蔡永壮吴则琪 . 顶部构筑物对狭长空间烟气蔓延阻滞机理研究. 轻工学报, 2021, 36(1): 95-101. doi: 10.12187/2021.01.012

    13. [13]

      许春平杨琛琛 . 调节血清胆固醇的保健功能食品研究综述. 轻工学报, 2014, 29(1): 44-47. doi: 10.3969/j.issn.2095-476X.2014.01.008

    14. [14]

      胡光武张超钦邬可可 . 地址语义驱动的服务功能链架构方案研究. 轻工学报, 2020, 35(5): 71-79. doi: 10.12187/2020.05.010

    15. [15]

      绪连彩张智强彭琼阳毛明邵晨蒋玲王国庆 . 脯氨酸离子液体催化CO2合成碳酸丙烯酯机理的密度泛函理论研究. 轻工学报, 2016, 31(1): 89-95. doi: 10.3969/j.issn.2096-1553.2016.1.014

    16. [16]

      宋亚丽李帅斌李紫燕黄龙谢君豪韩龙张宏忠 . Ag/g-C3N4复合材料可见光降解磺胺甲基嘧啶的效能及机理研究. 轻工学报, 2021, 36(6): 102-109. doi: 10.12187/2021.06.012

    17. [17]

      . 城市供水管网抗震功能可靠性分析. 轻工学报, 2012, 27(1): 49-52. doi: 10.3969/j.issn.1004-1478.2012.01.013

    18. [18]

      任景英蔡超峰姜利英 . 基于LabVIEW的多功能虚拟示波器的设计与实现. 轻工学报, 2012, 27(2): 91-94. doi: 10.3969/j.issn.1004-1478.2012.02.023

    19. [19]

      董吉林李鹏冲景新俊申瑞玲 . 全麦面粉营养特征、生理功能及产品开发现状述评. 轻工学报, 2018, 33(3): 45-50. doi: 10.3969/j.issn.2096-1553.2018.03.006

    20. [20]

      宛宇张春燕李茂生刘香玉 . 一种仿生多模式移动机构的设计与功能仿真. 轻工学报, 2019, 34(5): 78-87. doi: 10.3969/j.issn.2096-1553.2019.05.011

  • 加载中
计量
  • PDF下载量:  37
  • 文章访问数:  1722
  • 引证文献数: 0
文章相关
  • 收稿日期:  2020-07-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
秦于思, 程明, 韦海涛, 等. 高F值寡肽的功能特性研究进展[J]. 轻工学报, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004
引用本文: 秦于思, 程明, 韦海涛, 等. 高F值寡肽的功能特性研究进展[J]. 轻工学报, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004
QIN Yusi, CHENG Ming, WEI Haitao, et al. Research progress in functional characteristics of high Fisher ratio oligopeptides[J]. Journal of Light Industry, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004
Citation: QIN Yusi, CHENG Ming, WEI Haitao, et al. Research progress in functional characteristics of high Fisher ratio oligopeptides[J]. Journal of Light Industry, 2021, 36(3): 28-35. doi: 10.12187/2021.03.004

F值寡肽的功能特性研究进展

    作者简介:秦于思(1996-),女,山东省日照市人,齐鲁工业大学硕士研究生,主要研究方向为乳品科学.
  • 1. 齐鲁工业大学(山东省科学院) 食品科学与工程学院, 山东 济南 250300;
  • 2. 青岛市畜牧兽医研究所, 山东 青岛 266100;
  • 3. 山东熊猫乳品有限公司, 山东 济南 251400
基金项目:  山东省重点研发计划项目(2019YYSP025);山东省自然科学基金项目(ZR2020MC210);山东省农业重大应用技术创新项目(SD2019ZZ006);国家级大学生创新创业训练计划项目(201910431002)

摘要: F值寡肽因其独特的氨基酸组成而具有多种生理活性,通过对其功能特性及活性机理相关文献进行梳理,指出:高F值寡肽具有良好的抗疲劳和解醉酒功能特性,可作为生物活性肽应用于抗疲劳饮料、醒酒汤等功能性产品的开发;高F值寡肽在辅助治疗肝病、促进肝病患者体内F值回到正常范围等方面具有重要作用,但对肝病的影响机制尚不明确,需进一步的研究验证;高F值寡肽可调节体内苯丙氨酸代谢,开发高F值寡肽的医药食品将成为苯丙酮尿症(PKU)食疗的发展方向之一.未来可就高F值寡肽在医用食品中的消化特性和适用性、益生功能特性、加工过程中与其他食品组分的相互作用及对食品品质特性的影响等方面开展深入研究,以进一步拓展高F值寡肽在医用食品行业中的应用.

English Abstract

参考文献 (56) 相关文章 (20)

目录

/

返回文章