超声辅助酶解法制备小麦ACE抑制肽及其稳定性研究
Preparation of wheat ACE inhibitory peptides by ultrasound-assisted enzymatic hydrolysis method and its stability study
-
摘要: 以谷朊粉为原料,采用超声辅助酶解法制备小麦血管紧张素转换酶(Angiotensin Converting Enzyme,ACE)抑制肽,并以该抑制肽对ACE的抑制率为主要评价指标,以谷朊粉的水解度为次要评价指标,通过单因素试验结合响应面法对制备工艺进行优化,并研究该抑制肽的稳定性。结果表明:碱性蛋白酶是适宜酶解谷朊粉制备小麦ACE抑制肽的蛋白酶。最佳超声辅助酶解法制备小麦ACE抑制肽的条件为超声时间17 min、超声功率300 W、酶解温度60 ℃、酶解时间2.7 h、酶用量3600 U/g和谷朊粉质量分数5.1%,在此条件下,所制备的小麦ACE抑制肽对ACE的抑制率为72.90%,疏水性氨基酸含量为29.37 g/100 g。当该抑制肽的相对分子质量<3 kDa时,具有较好的强酸环境稳定性和热稳定性,在一定浓度K+、Mg2+环境中的稳定性也较好,且经体外模拟消化后仍能保持原活性的79.26%。因此,超声辅助酶解法是制备小麦ACE 抑制肽的有效方法。Abstract: The wheat Angiotensin Converting Enzyme (ACE) inhibitory peptide was prepared by ultrasonic-assisted enzymatic hydrolysis method, and the inhibitory rate of ACE was the main index, and the degree of hydrolysis of gluten powder was the secondary index. The preparation process was optimized by single factor test and response surface method, and the stability of the inhibitory peptides was studied. The results showed that alkaline protease was suitable for enzymatic hydrolysis of gluten powder to produce wheat ACE inhibitory peptides. The optimal preparation conditions were ultrasonic time of 17 min, ultrasonic power of 300 W, enzymatic hydrolysis temperature of 60 ℃, enzymatic hydrolysis time of 2.7 h, enzyme dosage of 3600 U/g, and gluten powder mass fraction of 5.1%. Under these conditions, the ACE inhibition rate of the prepared wheat ACE inhibitory peptides was 72.90%, and the hydrophobic amino acid content was 29.37 g/100 g. When the relative molecular weight of the inhibitory peptides was less than 3 kDa, it had good environmental stability and thermal stability, and also had good stability in a certain concentration of K+ and Mg2+, and could still maintain 79.26% of the original activity after simulated digestion in vitro. Therefore, ultrasound-assisted enzymatic hydrolysis method is an effective method to prepare wheat ACE inhibitory peptides.
-
-
[1]
张雯婧.湿面筋制备小麦肽及其生物活性和应用研究[D].无锡:江南大学,2022.
-
[2]
王颖.谷朊粉酶解物中抗氧化肽及ACE抑制肽的研究[D].郑州:郑州轻工业学院,2015.
-
[3]
ZHANG J X,WEN C T,LI C Z,et al.Antioxidant peptide fractions isolated from wheat germ protein with subcritical water extraction and its transport across caco-2 cells[J].Journal of Food Science,2019,84(8):2139-2146.
-
[4]
于兰兰,刘伟,周雅琳,等.小麦低聚肽对急性酒精中毒小鼠抗氧化功能的影响[J].食品科学,2020,41(7):159-163.
-
[5]
曾瑜,潘兴昌,张立实,等.小麦低聚肽对小鼠解酒功能的评价[J].现代预防医学,2019,46(7):1255-1259.
-
[6]
XIANG L,ZHENG Z J,GUO X J,et al.Two novel angiotensin I-converting enzyme inhibitory peptides from garlic protein:In silico screening, stability, antihypertensive effects in vivo and underlying mechanisms[J].Food Chemistry,2024,435:137537.
-
[7]
SUN S L,ZHANG G W,MU H Y,et al.The mixture of corn and wheat peptide prevent diabetes in NOD mice[J].Journal of Functional Foods,2019,56:163-170.
-
[8]
梁泳仪,王宏,白卫东,等.动物蛋白源免疫调节肽的研究进展[J].食品工业科技,2023,44(18):492-501.
-
[9]
KAN J T,CHENG J R,XU L M,et al.The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota:A double-blinded, placebo-controlled study[J].European Journal of Nutrition,2020,59(4):1655-1666.
-
[10]
WANG X Q,YU H H,XING R E,et al.Structural properties,anti-fatigue and immunological effect of low molecular weight peptide from Monkfish[J].Journal of Functional Foods,2023,105:105546.
-
[11]
YU D Y,WANG C,SONG Y F,et al.Discovery of novel angiotensin-converting enzyme inhibitory peptides from Todarodes pacificus and their inhibitory mechanism: In silico and in vitro studies[J].International Journal of Molecular Sciences,2019,20(17):4159.
-
[12]
孙宁玲.高血压领域的热点及思考[J].中华高血压杂志,2015,23(3):203-205.
-
[13]
LAI X F,PAN S S,ZHANG W J,et al.Properties of ACE inhibitory peptide prepared from protein in green tea residue and evaluation of its anti-hypertensive activity[J].Process Biochemistry,2020,92:277-287.
-
[14]
MIRZAEI M,MIRDAMADI S,SAFAVI M.Structural analysis of ACE-inhibitory peptide (VL-9) derived from Kluyveromyces marxianus protein hydrolysate[J].Journal of Molecular Structure,2020,1213:128199.
-
[15]
刘政,刘莹,王丽威,等.生物活性肽的酶法制备[J].化学与生物工程,2005,22(3):7-9.
-
[16]
吴倩,张丽芬,陈复生.超声波对蛋白质提取及改性影响的研究进展[J].食品与机械,2015,31(4):256-259.
-
[17]
UMEGO E C,HE R H,REN W B,et al.Ultrasonic-assisted enzymolysis: Principle and applications[J]. Process Biochemistry, 2021, 100: 59-68.
-
[18]
钟玉旺,安姝璇,王雪峰,等.超声波辅助酶法制备辣木籽ACE抑制肽工艺优化[J].中国油脂,2023,48(3):47-51
, 89. -
[19]
CUSHMAN D W,CHEUNG H S.Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung[J].Biochemical Pharmacology,1971,20(7):1637-1648.
-
[20]
罗艳华,王全杰,陈沛海,等.蛋白水解物水解度测定方法的研究[J].皮革与化工,2017,34(2):26-31.
-
[21]
国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中氨基酸的测定:GB 5009.124—2016[S].北京:中国标准出版社,2017.
-
[22]
邵燕秋.鳗鱼骨胶原蛋白ACE抑制肽的制备及活性研究[D].舟山:浙江海洋大学,2022.
-
[23]
谭力铭,曹妍,裴海生,等.酸枣仁ACE抑制肽酶解工艺优化[J].食品工业科技,2022,43(2):182-194.
-
[24]
殷海洋.超声波辅助酶法制备油莎豆ACE抑制肽及其抗氧化性研究[D].长春:吉林农业大学,2021.
-
[25]
唐金鑫,由高飞,李秋阳,等.超声波辅助酶解花生蛋白制备α-淀粉酶抑制肽工艺优化[J].食品工业科技,2022,43(4):161-168.
-
[26]
周婷,卢方云,黄瑾,等.响应面法优化超声辅助酶法制备无骨鸡爪胶原蛋白肽[J].食品工业科技,2021,42(19):182-189.
-
[27]
卢蔼纯,苏嘉毅,杨迅,等.富硒核桃粕蛋白降血压肽的酶解制备及硒含量分析[J].现代食品科技,2023,39(2):161-169.
-
[28]
曹诗诺,陈宇,韩泽玉,等.Plastein反应修饰对核桃血管紧张素转化酶抑制肽活性及稳定性影响研究[J].食品与发酵工业,2023,49(21):109-115.
-
[29]
高泽汝,宁梦茹,刘昆仑,等.酶法制备玉米胚芽ACE抑制肽的研究[J].河南工业大学学报(自然科学版),2020,41(5):44-49.
-
[30]
贾俊强.超声对酶法制备小麦胚芽ACE抑制肽的影响及其作用机理[D].镇江:江苏大学,2009.
-
[31]
王紫微.超声辅助酶解制备克氏原螯虾调味料的研究[D].长春:吉林大学,2019.
-
[32]
殷海洋.超声波辅助酶法制备油莎豆ACE抑制肽及其抗氧化性研究[D].长春:吉林农业大学,2021.
-
[33]
许新月.超声辅助酶法制备杏鲍菇降血压活性多肽工艺优化[D].泰安:山东农业大学,2020.
-
[34]
陈默.珍珠油杏杏仁蛋白和抗氧化肽的制备及功能活性研究[D].泰安:山东农业大学,2022.
-
[35]
史珂雨, 赵慧琳, 李明鑫, 等.ACE抑制肽生物信息及核桃蛋白虚拟酶切研究[J].食品研究与开发, 2021, 42(14): 165-171
,184. -
[36]
ZHU C Z, ZHANG W G, KANG Z L, et al. Stability of an antioxidant peptide extracted from Jinhua ham[J]. Meat Science, 2014, 96(2): 783-789.
-
[37]
潘顺顺.茶叶制备血管紧张素转换酶抑制肽及其降血压活性研究[D].广州: 华南农业大学, 2018.
-
[1]
计量
- PDF下载量: 12
- 文章访问数: 675
- 引证文献数: 0