JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

H2SO4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究

杨凤丽 梁国斌 顾宇阳

杨凤丽, 梁国斌, 顾宇阳. H2SO4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究[J]. 轻工学报, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009
引用本文: 杨凤丽, 梁国斌, 顾宇阳. H2SO4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究[J]. 轻工学报, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009
YANG Fengli, LIANG Guobin and GU Yuyang. Study on catalytic performance of H2SO4 modified attapulgite in the process of dehydration of glucose to prepare 5-hydroxymethylfurfural[J]. Journal of Light Industry, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009
Citation: YANG Fengli, LIANG Guobin and GU Yuyang. Study on catalytic performance of H2SO4 modified attapulgite in the process of dehydration of glucose to prepare 5-hydroxymethylfurfural[J]. Journal of Light Industry, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009

H2SO4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究

    作者简介: 杨凤丽(1984-),女,河南省开封市人,江苏理工学院讲师,博士,主要研究方向为固体酸催化生物质转化.;
  • 基金项目: 国家自然科学基金项目(21406020);江苏省科技厅资助项目(BK20140257)

  • 中图分类号: O643.3

Study on catalytic performance of H2SO4 modified attapulgite in the process of dehydration of glucose to prepare 5-hydroxymethylfurfural

  • Received Date: 2018-07-05

    CLC number: O643.3

  • 摘要: 对经H2SO4改性的凹凸棒土作为固体酸催化剂时,其在葡萄糖脱水制备生物基平台化合物5-羟甲基糠醛(HMF)过程中的催化性能进行研究,结果表明:凹凸棒土经不同浓度H2SO4改性后,Bronsted酸位点显著增加,当H2SO4浓度为1.0 mol/L时,同时具有较多的Bronsted酸位点和Lewis酸位点,此时催化葡萄糖脱水制备HMF效果最好,其收率可达46.6%.该催化剂在含水体系中表现出良好的稳定性,催化剂重复使用4次,HMF收率均在46%以上,活性未发生明显改变.
    1. [1]

      CLIMENT M J,CORMA A,IBORRA S.Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts[J].Green Chemistry,2011,13(3):520.

    2. [2]

      CLIMENT M J,CORMA A,IBORRA S.Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals[J].Chemical Reviews,2011,111(2):1072.

    3. [3]

      BINDER J B,RAINES R T.Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J].Journal of the American Chemical Society,2009,131(5):1979.

    4. [4]

      TAARNING E,OSMUNDSEN C M,YANG X B,et al.Zeolite-catalyzed biomass conversion to fuels and chemicals[J].Energy & Environmental Science,2011,4(3):793.

    5. [5]

      GAO T Q,GAO T Y,FANG W H,et al.Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in water by hydrotalcite-activated carbon composite supported gold catalyst[J].Molecular Catalysis,2017, 439:171.

    6. [6]

      YANG C F,HUANG C R.Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate[J].Bioresource Technology,2016,214:311.

    7. [7]

      GALLEZOT P.Conversion of biomass to selected chemical products[J].Chemical Society Reviews,2012,41(4):1538.

    8. [8]

      VERENDEL J J,CHURCH T L,ANDERSSON P G.Catalytic one-pot production of small organics from polysaccharides[J].Synthesis-Stuttgart,2011(11):1649.

    9. [9]

      YU I K M,TSANG D C W.Conversion of biomass to hydroxymethylfurfural:A review of catalytic systems and underlying mechanisms[J].Bioresource Technology,2017,238:716.

    10. [10]

      MIKA L T,CSEFALVAY E,NEMETH A.Catalytic conversion of carbohydrates to initial platform chemicals:chemistry and sustainability[J].Chemical Reviews,2018,118(2):505.

    11. [11]

      DONOEVA B,MASOUD N,DE JONGH P E.Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural[J].Acs Catalysis,2017,7(7):4581.

    12. [12]

      GAAZ T S,SULONG A,KADHUM A A H,et al.Impact of sulfuric acid treatment of halloysite on physico-chemic property modification[J].Materials,2016,9(8):16.

    13. [13]

      GARCIA-SANCHO C,FUNEZ-NUNEZ I,MORENO-TOST R,et al.Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst[J].Applied Catalysis B:Environmental,2017,206:617.

    14. [14]

      LI X Y,JIANG Y,LIU X Q,et al.Direct synthesis of zeolites from a natural clay,attapulgite[J].Acs Sustainable Chemistry & Engineering,2017,5(7):6124.

    15. [15]

      WANG Y Z,SHI J,WU R F,et al.Room-temperature CO oxidation over calcined Pd-Cu/palygorskite catalysts[J].Applied Clay Science,2016,119:126.

    16. [16]

      ZHANG Z F,WANG W B,WANG A Q.Highly effective removal of methylene blue using functionalized attapulgite via hydrothermal process[J].Journal of Environmental Sciences,2015,33:106.

    17. [17]

      ZHENG J J,CHEN J J,SHAO H,et al.Synthesis of MeSAPO-11 zeolites from attapulgite for dehydration of carbohydrates to HMF[J].Journal of Renewable and Sustainable Energy,2017,9(6):9.

    18. [18]

      CHEN J J,YU Y,CHEN J Y,et al.Chemical modification of palygorskite with maleic anhydride modified polypropylene:mechanical properties,morphology,and crystal structure of palygorskite/polypropylene nanocomposites[J].Applied Clay Science,2015,115:230.

    19. [19]

      ZHANG Z H,LIANG H J,DU X G,et al.H2S removal:correlation between performance and loading species of Zn-Fe/attapulgite[J].Environmental Progress & Sustainable Energy,2014,33(2):378.

    20. [20]

      ROMAN-LESHKOV Y,CHHEDA J N,DUMESIC J A.Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J].Science,2006,312(5782):1933.

    21. [21]

      CHAREONLIMKUN A,CHAMPREDA V,SHOTIPRUK A,et al.Catalytic conversion of sugarcane bagasse,rice husk and corncob in the presence of TiO2,ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition[J].Bioresource Technology,2010,101(11):4179.

    22. [22]

      WATANABE M,AIZAWA Y,IIDA T,et al.Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K:relationship between reactivity and acid-base property determined by TPD measurement[J].Applied Catalysis A:General,2005,295(2):150.

    23. [23]

      CARNITI P,GERVASINI A,BOSSOLA F,et al.Cooperative action of Bronsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water[J].Applied Catalysis B:Environmental,2016,193:93.

    24. [24]

      KREISSL H T,NAKAGAWA K,PENG Y K,et al.Niobium oxides:correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural[J].Journal of Catalysis,2016,338:329.

    25. [25]

      JIAO H F,ZHAO X L,LV C X,et al.Nb2O5-gamma-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural[J].Scientific Reports,2016,6:34068.

    26. [26]

      YUE C C,LI G N,PIDKO E A,et al.Dehydration of glucose to 5-hydroxymethylfurfural using Nb-doped tungstite[J].Chemsuschem,2016,9(17):2421.

    27. [27]

      SUGANUMA S,NAKAJIMA K,HARA M,et al.Hydrolysis of cellulose by amorphous carbon bearing SO3H,COOH,and OH groups[J].Journal of the American Chemical Society,2008,130(38):12787.

    28. [28]

      朱丽伟,王建刚,赵萍萍,等.Nb-P/SBA-15催化剂的制备及其对果糖水解制5-羟甲基糠醛的催化性能[J].燃料化学学报,2017,45(6):651.

    1. [1]

      刘卫涛张桂伟高盟锦陈雨蒙韩敬莉李亚坤平丹 . ZnFe2O4/N-C催化剂的制备及其电解水催化性能. 轻工学报, 2020, 35(3): 37-43. doi: 10.12187/2020.03.005

    2. [2]

      郑勇郑永军田大勇侯绍刚 . 纤维素催化转化制取2,5-二甲基呋喃的研究. 轻工学报, 2019, 34(3): 28-33. doi: 10.3969/j.issn.2096-1553.2019.03.003

    3. [3]

      陈志军尹甲兴朱海燕王雪兆杨清香魏永豪 . CO2固体吸附剂研究述评. 轻工学报, 2011, 26(5): 107-111. doi: 10.3969/j.issn.1004-1478.2011.05.027

    4. [4]

      史岽瑛崔超杰李会林聂周缓郑凯君 . 光敏性H2[Ag2(W10O32)(BPY)4]复合材料的制备及其光催化氧化环己烷性能研究. 轻工学报, 2020, 35(1): 47-54. doi: 10.12187/2020.01.006

    5. [5]

      顾建峰臧云浩高峰 . 钒氧化物修饰杂原子B-Beta分子筛催化剂的制备及其对丙烷脱氢的催化性能研究. 轻工学报, 2020, 35(1): 35-46,71. doi: 10.12187/2020.01.005

    6. [6]

      王军王满满杨许召邹文苑陈翔宋浩 . 1-(吡啶鎓基)-5-(1-甲基哌啶鎓)戊烷双三氟磺酰亚胺盐的合成与热力学性质研究. 轻工学报, 2014, 29(5): 12-16. doi: 10.3969/j.issn.2095-476X.2014.05.003

    7. [7]

      刘晨王祯朱先约王文婷黄申翟玉俊 . 烟草C4H2基因的克隆与表达特性分析. 轻工学报, 2022, 37(1): 68-78. doi: 10.12187/2022.01.010

    8. [8]

      黄改玲孙迎迎刘宝强 . CoFe2O4/ZnAl-LDO吸附剂的制备及其对染料吸附性能研究. 轻工学报, 2018, 33(3): 8-15. doi: 10.3969/j.issn.2096-1553.2018.03.002

    9. [9]

      邓梅忠陈笃建黄胜翰周跃飞 . 烟用香精香料中3,4,5-三羟基苯甲酸的测定. 轻工学报, 2014, 29(4): 39-42. doi: 10.3969/j.issn.2095-476X.2014.04.009

    10. [10]

      王宁宁 . 最优加权融合SO2转化率预测模型. 轻工学报, 2015, 30(3-4): 138-141. doi: 10.3969/j.issn.2095-476X.2015.3/4.030

    11. [11]

      朱灵峰孙倩高如琴贾梦哲赵幸幸吕昌昌赵玉驰秦梦涛 . 纳米TiO2/硅藻土基多孔陶粒复合材料的制备及其甲醛去除效果研究. 轻工学报, 2018, 33(2): 1-6. doi: 10.3969/j.issn.2096-1553.2018.02.001

    12. [12]

      王宜鹏韩龙洋孙学辉孙培健杨松贾云祯张晓兵聂聪 . 改性GPA降低纸-醋二元复合滤棒卷烟主流烟气中苯酚释放量的研究. 轻工学报, 2022, 37(4): 66-72. doi: 10.12187/2022.04.009

    13. [13]

      杨光王瑞娟张建强刘瑞雪陈荣源曹霞方少明 . 阳离子双子表面活性剂凝聚相萃取分离甲基橙的研究. 轻工学报, 2022, 37(2): 102-109. doi: 10.12187/2022.02.014

    14. [14]

      梁国斌翟良创汪斌姚佳周全法 . 固定化卤醇脱卤酶的制备及催化合成ATS-5的稳定性考察. 轻工学报, 2017, 32(2): 26-32. doi: 10.3969/j.issn.2096-1553.2017.2.005

    15. [15]

      韩莉锋王志涛金恺张林森 . ZnWO4/竹炭复合材料的制备及其光催化性能研究. 轻工学报, 2014, 29(4): 16-19. doi: 10.3969/j.issn.2095-476X.2014.04.004

    16. [16]

      倪天龙路林 . 基于STC12C5A60S2的电子相框设计. 轻工学报, 2011, 26(5): 31-33,47. doi: 10.3969/j.issn.1004-1478.2011.05.008

    17. [17]

      张太军毕晖张敏宋一兵李莉黄劲松曾育聪李涛陈岱宜崔凤玲 . SiO2-KH550/TiO2防晒剂的制备与性能研究. 轻工学报, 2019, 34(1): 51-56. doi: 10.3969/j.issn.2096-1553.2019.01.007

    18. [18]

      宋亚丽李帅斌李紫燕黄龙谢君豪韩龙张宏忠 . Ag/g-C3N4复合材料可见光降解磺胺甲基嘧啶的效能及机理研究. 轻工学报, 2021, 36(6): 102-109. doi: 10.12187/2021.06.012

    19. [19]

      宋亚丽张肖静朱艺博金雅霖张硕张宏忠 . Ag/g-C3N4可见光催化技术降解水中磺胺嘧啶的研究. 轻工学报, 2019, 34(6): 72-79. doi: 10.3969/j.issn.2096-1553.2019.06.010

    20. [20]

      平丹张逸飞张桂伟柴子涵易峰黄思光韩敬莉 . 电催化还原CO2反应体系研究进展. 轻工学报, 2023, 38(2): 118-126. doi: 10.12187/2023.02.015

  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  909
  • 引证文献数: 0
文章相关
  • 收稿日期:  2018-07-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
杨凤丽, 梁国斌, 顾宇阳. H2SO4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究[J]. 轻工学报, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009
引用本文: 杨凤丽, 梁国斌, 顾宇阳. H2SO4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究[J]. 轻工学报, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009
YANG Fengli, LIANG Guobin and GU Yuyang. Study on catalytic performance of H2SO4 modified attapulgite in the process of dehydration of glucose to prepare 5-hydroxymethylfurfural[J]. Journal of Light Industry, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009
Citation: YANG Fengli, LIANG Guobin and GU Yuyang. Study on catalytic performance of H2SO4 modified attapulgite in the process of dehydration of glucose to prepare 5-hydroxymethylfurfural[J]. Journal of Light Industry, 2019, 34(1): 64-70. doi: 10.3969/j.issn.2096-1553.2019.01.009

H2SO4改性凹凸棒土在葡萄糖脱水制备5-羟甲基糠醛过程中的催化性能研究

    作者简介:杨凤丽(1984-),女,河南省开封市人,江苏理工学院讲师,博士,主要研究方向为固体酸催化生物质转化.
  • 江苏理工学院 化学与环境工程学院, 江苏 常州 213000
基金项目:  国家自然科学基金项目(21406020);江苏省科技厅资助项目(BK20140257)

摘要: 对经H2SO4改性的凹凸棒土作为固体酸催化剂时,其在葡萄糖脱水制备生物基平台化合物5-羟甲基糠醛(HMF)过程中的催化性能进行研究,结果表明:凹凸棒土经不同浓度H2SO4改性后,Bronsted酸位点显著增加,当H2SO4浓度为1.0 mol/L时,同时具有较多的Bronsted酸位点和Lewis酸位点,此时催化葡萄糖脱水制备HMF效果最好,其收率可达46.6%.该催化剂在含水体系中表现出良好的稳定性,催化剂重复使用4次,HMF收率均在46%以上,活性未发生明显改变.

English Abstract

参考文献 (28) 相关文章 (20)

目录

/

返回文章